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ABSTRACT

Object modeling for applications like CAD/CAM, simulation and computer games, has
traditionally been limited to the shape of objects. Currently, a trend can be observed
to add several types of semantics to object models.
This observation is discussed in some detail for three modeling approaches worked on
in our research group: feature modeling, including recent advances for freeform
features, modeling families of objects, and modeling virtual worlds. The use of
semantics in some other modeling approaches is briefly discussed.
Adding semantics can ease specification and modification of an object model, help to
guarantee its validity, and be useful for applications which use the model, such as
process planning for manufacturing or gameplay. Much work remains to be done to
determine the types of semantics most useful in practice.
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1 INTRODUCTION

In many applications, including computer-aided design and manufacturing, computer simulations, and
computer games, the geometry of objects plays a predominant role. The geometry being considered
nowadays can be very complex. An object can consist of many parts, possibly arranged in some
pattern, and the parts can have freeform geometry. In virtual worlds, many objects can be included.

Traditionally, only the geometry of an object is represented in its object model, typically by
mathematical equations of its bounding surfaces. Such equations do not contain any semantics of the
object. Semantics represents certain invariant properties of the object, typically by annotations or
constraints. It can be very helpful in building object models, but also in, for example, manufacturing
planning and gameplay. Although the designer or engineer who specifies an object model often has
certain semantics in mind, there is no way to store it in geometric representations. Currently, however,
a trend can be observed to add semantics to object models. The major product modeling approach in
which this is done is feature modeling, but the type of semantics included in feature models is very
diverse. In particular the use of semantics in freeform feature modeling is a new development. In other
modeling approaches, such as modeling families of objects and modeling virtual worlds, the role of
semantics is also increasing.
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In this paper, the role of semantics is discussed in some detail for the modeling approaches
mentioned above. This discussion is based on research performed in our group. Some other
approaches in which semantics is important are only briefly discussed. The overview we thus give of
the role of semantics in modeling is far from complete. For example, semantics already plays a role in
current commercial feature modeling systems and game development tools too, although usually in a
less advanced way than discussed here. The goal of this paper, however, is not to give a complete
survey of the role of semantics in object modeling, but rather to show that semantics can be very
helpful for initial specification and subsequent modification of models, for guaranteeing the validity
of models, and for applications making use of object models.

Section 2 gives some background information on modeling and semantics. Sections 3 to 5 describe
the role of semantics in the modeling approaches worked on in our research group: feature modeling,
modeling families of objects, and modeling virtual worlds. Section 6 shortly indicates this role for
some other modeling approaches not worked on in our research group. Section 7 enumerates some
conclusions and future developments.

2 BACKGROUND

In traditional object modeling, only information about the geometry of an object is stored, mainly in
the form of mathematical equations of surfaces. A distinction can be made between surface modeling
and solid modeling.

In surface modeling, only the geometry of surfaces is represented, by mathematical equations,
nowadays usually Non-Uniform Rational B-Splines (NURBS) [14]. NURBS offer much modeling freedom,
i.e. surfaces modeled with them can be arbitrarily curved or freeformed. Surface modeling has many
applications in, for example, styling and aesthetic design.

In solid modeling, the geometry of solid objects is represented by a boundary representation or by
a constructive solid geometry representation. A boundary representation consists of an enumeration
of the faces, edges and vertices bounding the object; the faces and edges in turn are described by their
mathematical equation, and the vertices by their coordinates. The relations between the faces, edges
and vertices are stored in a graph structure; this aspect of the model is called its topology. A
constructive solid geometry representation consists of a number of relatively simple primitive objects
combined by set operations; the primitives are again represented by mathematical equations.
Traditionally, in solid modeling only a set of relatively simple surfaces, in particular algebraic surfaces,
could be used to represent faces of an object, but nowadays surfaces like NURBS are also available to
represent freeform faces of an object. Solid modeling has many applications in, for example,
mechanical engineering.

In many applications, e.g. modeling virtual worlds, surfaces and faces of objects are represented
by an approximating mesh with small planar faces, in particular triangles.

The above representations are purely geometric, and contain no information on why certain
geometry is there in an object model or how it can be used. Stated differently, there is no semantic
information in the model. However, as mentioned in Section 1, there is a trend in object modeling to
add more semantics to models. Semantic information represents certain invariant properties of an
object, and is useful for many purposes. For example, it can help in creating only valid object models,
and in using object models for engineering applications and for changing virtual worlds during
gameplay. Semantics typically occurs in two types: annotations and constraints.

Annotations are concerned with descriptive semantics, i.e. semantic information is expressed in,
usually short, descriptions or attributes attached to aspects of an object model. Such semantics can be
helpful in, for example, interpretation of a model by another engineer and in searching a database or
the internet for objects, or parts of an object, with particular semantics; the latter is shortly illustrated
in Section 6.

Descriptive semantics is, however, less suitable to automatically check object models for validity
and generate object models. For these purposes well-defined, or formal, semantics is needed. Such
semantics is usually expressed with constraints, or relations, between certain entities in an object
model [3]. Examples of this are that two side faces of a slot in a mechanical part should be parallel,
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and, at a much higher modeling level, that two buildings should be adjacent to a road and next to each
other. Many more examples of such constraints are given in Sections 3 to 5.

To determine the shape of an object specified with constraints, some types of constraints need to
be solved. Several constraint solving algorithms are available [5]. Typically, these compute
configurations of the geometry that satisfy all the constraints. Constraints that specify properties such
as distances, perpendicularity, parallelism and coplanarity of faces, can be automatically handled in
this way. The solver can either compute one configuration of the geometry, or indicate that no
configuration or more than one configuration of the geometry exist for the specified constraints. A
configuration can, for example, be the set of all positioned faces of a mechanical object, or the set of
all positioned buildings in a virtual world. After the constraint solving, the geometry can be generated.
Other types of constraints, e.g. limitations on the volume of an object, cannot be solved, but can only
be checked after the geometry has been generated. If such a constraint turns out to be violated, the
model has to be adapted by the user of the modeling system.

Specifying an object model by a set of constraints comes down to a declarative way of modeling:
only properties of the object model have to be specified, not how the geometry has to be generated
[10]. The counterpart of declarative modeling is procedural modeling, in which in fact a procedure to
generate the geometry has to be specified. In practice, many modeling systems use a combination of
declarative and procedural techniques. As semantics becomes more important, declarative modeling
also becomes more important.

In the next sections, it will be shown what the role of semantics is, and how it is handled, in
several modeling approaches.

3 FEATURE MODELING

Feature modeling is nowadays the predominant approach for product modeling [16],[4]. It enables the
addition of semantics to the geometric information in a product model. A feature model consists of a
set of features that are related to each other.

A feature can be defined as a representation of shape aspects of a product that are mappable to a
generic shape and are significant for some product life cycle phase. Semantic information can be
associated with the shape information, e.g. on the use of the shape aspects for the end-user, but also
engineering information, e.g. on the way the shape aspects can be manufactured. Typical examples of
features are protrusions, holes, slots and pockets, but many other features can be thought of,
dependent on the specific application, and it should therefore be possible to easily introduce new
types of features in a feature modeling system.

All properties of a feature type are specified in the corresponding feature class, including the
generic shape of the feature, and a number of parameters and constraints that characterize this shape.
Examples of parameters are the two radii and the two depths of a stepped through hole; examples of
constraints are that the axes of the two cylindrical holes that comprise the stepped through hole are
collinear, and that the radius of the upper hole should be larger than the radius of the lower hole (see
Fig. 1(a)). The properties define the basic semantics of the feature class and all its instances.

(a) (b)

Fig. 1: Feature modeling: (a) stepped through hole feature class, (b) complete feature model.

parameters:

r1, r2, d1, d2

constraints:

(a) axes of two cylindrical
holes are collinear

(b) r1 > r2

r1d1

d2 r2
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A user of a feature modeling system usually specifies a feature model via a graphical user interface.
He can create instances from feature classes in a library, by specifying values for the parameters, and
add them to the model. An instance is normally attached to other features in the model, i.e. some of
its faces are coupled to faces of other features. Additional model constraints can be used to relate an
instance to other feature instances in the model, and specify other semantics for the feature model.
Examples of such constraints are that the axes of two stepped through hole instances should be
parallel, at a certain distance, and that the radius of the upper hole of one particular stepped through
hole instance should be twice as large as the radius of the lower hole. Feature instances can also be
modified, by changing their parameters, or be removed from the model. So a feature model essentially
consists of a set of feature instances (see Fig. 1(b)), including all the constraints from their respective
class, and a set of additional model constraints between feature instances.

Current feature modeling systems are quite advanced, but fall short in one or more of the
following respects: shape domain, i.e. the types of shapes that can be modeled, facilities to specify the
semantics of features, and validity maintenance of a feature model.

The shape domain of current feature modeling systems is usually limited to regular-shaped
features and simple freeform features, e.g. arising from extrusions of freeform curves. We have
recently developed approaches for more general freeform feature modeling, both for freeform surface
feature models [13] and for freeform volumetric feature models [2].

The types of constraints that can be used in current feature modeling systems to specify
semantics are usually limited to geometric, algebraic and dimension constraints. We have developed
several other types of constraints, to be able to more extensively and precisely specify the semantics
of features and feature models. These include several constraint types that are specific for freeform
features. An overview of these constraint types and what they specify is given in Tab. 1.

constraint type constraint specifies
geometric geometric properties, such as that two faces

should be parallel at a certain distance or
be perpendicular

algebraic arithmetic relations between values of
parameters

dimension range of values allowed for a parameter
boundary whether a feature face should be present on

the model boundary, e.g. that the top face
of a hole should not be on the model
boundary

interaction whether certain interactions between
features are allowed, e.g. whether a slot may
be split into two slots

surface area minimum or maximum area of face or of all
faces of a feature

volume minimum or maximum volume of feature
continuity minimum degree of continuity within

feature face or between feature faces
curvature minimum or maximum curvature within

feature face
self-intersection whether self-intersection of feature face or

of feature is allowed

Tab. 1: Constraint types.

Validity maintenance in current feature modeling systems is usually limited, i.e. the semantics of a
model is not adequately maintained during the modeling process. In many systems ‘features’ are in
fact only a kind of shape macros, i.e. only the geometry resulting at the time of creation of the feature
is stored in the product model. Other systems do store some information about features in the
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product model, but this information is not enough to check that the semantics of all features is
maintained during the modeling process. For example, a through hole can be turned into a blind hole
by blocking one of the openings of the hole, without the system even notifying this change. Although
the change in the model is geometrically correct, it is incorrect in the sense that the semantics of the
feature is changed from a through hole into a blind hole. Stated differently, the model has become
invalid.

We have developed the semantic feature modeling approach in which all semantics in a feature
model is checked by the system after each modeling operation [3]. This comes down to solving and
checking all constraints in the model. A feature model is valid if all constraints are still satisfied, and
invalid otherwise. If a model has become invalid, e.g. if one of the openings of a through hole is
blocked, this is notified by the system, and the user is assisted in creating a valid model again. The
latter is called validity recovery, and includes reporting constraint violations to the user, documenting
their scope and causes, and, whenever possible, providing context-sensitive corrective hints to create a
valid model again.

The semantic feature modeling approach has now been implemented for simple and freeform
features, and can guarantee that the user can create only valid models [3],[2]. This can significantly
improve the modeling process, both initial specification and subsequent modification of a model. In
addition, semantics relevant to downstream applications, such as finite element analysis [18] and
process planning for manufacturing [16], can be included in feature models and effectively support
such applications. Thus, semantics in feature modeling can support the entire product life cycle.

4 MODELING FAMILIES OF OBJECTS

For many applications, what is needed is not just a geometric model of a single object, but a generic
model that represents a set of similar objects. Such a set of objects is called a family of objects, and
such models are called family models. A family model can be used to represent a product line, e.g. a
mechanical part with different sizes, or a customizable product, which can be easily adjusted to
specific customer specifications. Also, a family model can represent a design that is not yet completely
specified; this model can then be used to explore possible design variations, or can be adjusted to fit
as a part of a larger model [10].

Typically, families of objects are represented by parametric models, which characterize all
possible shape variations by a set of parameters. By specifying a value for each parameter, a member
of the family is selected. Feature models, discussed in Section 3, are also parametric models, where the
parameters are the dimensions of the features in the model. However, there are two main difficulties
in modeling families of objects with current feature models.

Firstly, we need to specify exactly which objects are members of the family, i.e. the semantics of
the family. Current feature models do not allow the semantics of a family to be properly specified. In
particular, topological properties of families cannot be specified, and as a result, objects with
undesirable topology may be part of the modeled family.

Secondly, a family of objects is an abstract concept that is not always easy to work with. In
particular, it is often not clear to the user for which parameter values family members exist, and how
parameters affect the topology of the model. Current feature modeling systems provide little support
for working with families of objects.

In [9] we have presented a model for families of objects, the Declarative Family of Objects Model
(DFOM), which is based on the semantic feature model discussed in Section 3. In the DFOM, the
geometry and topology of a model do not have to be fully specified. Thus, a DFOM represents, in
general, a family of objects. A DFOM is specified completely declaratively, using geometric and
topological variables and constraints. To determine family members, the geometric and topological
constraints are solved. Note that in the semantic feature modeling approach discussed in Section 3,
topological constraints are only checked, whereas here these constraints are solved.

The building blocks of a DFOM are geometric variables, called carriers, and topological variables,
called constructs. Carriers define surfaces that partition space, e.g. a planar carrier defines a planar
surface and the two half-spaces on either side of the surface. Constructs basically represent point sets,
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i.e. volumes, surfaces, curves and individual points, constructed by intersections of subspaces defined
by carriers. Carriers and constructs are related via so-called subspace constraints.

To further specify the semantics of a family, geometric constraints are imposed on carriers, and
topological constraints on constructs. Geometric constraints include distances and angles between
carriers, which can be used as dimension parameters. Topological constraints include nature
constraints, which specify whether material should be added or removed by a construct, boundary
constraints, which specify relations between constructs and the boundary of the model, and
interaction constraints, which specify how constructs may interact with each other (see Tab. 1).

A DFOM may have zero, one, a finite or an infinite number of realizations. A realization is an
object that satisfies all constraints. Realizations are determined by solving first the geometric
constraints and then the topological constraints [9]. A DFOM that has one realization represents a
single family member.

A user has a lot of flexibility for modeling families or single objects. A DFOM can be built using
basic variables and constraints, or by combining features, which are essentially other DFOMS that are
added as a whole. By adding constraints, the number of realizations of a DFOM can be reduced until
only one realization remains, and the DFOM thus represents a single family member.

In Fig. 2, two different realizations of a DFOM are shown. The model does not completely specify
how the blind hole may interact with the other features in the model. Therefore, the blind hole may be
partially obstructed by a block protrusion feature, as in realization (a). If an interaction constraint is
added that specifies that the hole may not be obstructed, then only realization (b) will be found.

(a) (b)

Fig. 2: Two realizations of a DFOM: (a) blind hole partially obstructed, (b) blind hole not obstructed.

A family may not have members for all combinations of parameter values. To help users instantiate
family members, we have developed methods to compute parameter ranges, i.e. the range of allowable
values for any parameter [8]. Also, we have developed methods to determine the critical parameter
values, i.e. the parameter values for which topological changes occur [11]. The latter method allows
users to more easily explore the topological variations in a family.

The declarative modeling approach used to specify DFOMs, makes it possible to exactly specify
the semantics of families of objects. Such declarative models allow much more flexibility during the
modeling process, because incomplete specifications are allowed. Furthermore, critical parameter
values and parameter ranges can be computed for declarative models, which can help users with
instantiating family members and with exploring and understanding families of objects.

5 MODELING VIRTUAL WORLDS

While designing virtual worlds, whether for games, simulations or other applications, semantics can
play an important role as well [20]. Usually, in virtual worlds, semantics is added to objects on a
higher level than in CAD applications: the global shape and relative position of objects is more
important than their detailed shape.

In our methodology, semantics is defined for object classes using features, which have a shape
and a type. The features are defined once for each object class, and are instantiated automatically for
every geometric model that is assigned to this class. A simple example is a four-legged table class. We
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can define a tabletop feature at the top and four leg features at the corners of the bounding box.
These features are instantiated for each geometric model of a four-legged table that is assigned to the
class. We chose this method, because when designing a virtual world, geometric models for objects
have often already been created, typically without any semantics at all. By assigning such a model to
an object class in the library, it is enriched with the semantics of this class. The classes in the library
also contain attributes. These attributes need to be instantiated for each individual model, either
manually or in some cases automatically. For example, the volume of a 3D model can be computed
and used to determine the weight of the model.

The object class library further contains formal semantics in the form of relationships, or
constraints, between classes. These relationships can involve features to, for example, specify that we
want a plate or a mug to be placed on the tabletop feature of an instance of the table class. This means
that by assigning a model to a class, the model is automatically enriched with, mostly geometric,
relationships. In the methodology used in our research group, we associate these relationships with
specific object classes instead of with the feature types directly. The reason for this is that most
relationships used in virtual environments are specific for classes, and usually even specific for a
given context. For example, plates need to be placed differently when they are put on a dinner table,
on the kitchen sink before the washing up, or when stored in a cupboard. Some predefined feature
types, however, do have embedded placement rules. For example, so-called off-limits features cannot
overlap with any other features, and clearance features can only overlap with other clearance features.
This last type is used to, for example, guarantee some free space in front of a cupboard.

The semantic layout solving approach, explained in more detail in [21], accommodates both user-
assisted design and fully automated procedural generation of virtual worlds. Given an initial layout,
the layout solver can position a new object in that layout, complying with the relationships defined in
the classes. This initial layout can be empty or, for example, contain walls when creating a layout for
the objects inside a room. By iteratively providing a set of objects to the solver, a valid layout is
created. In a manual design application, the user adds the new object. The locations deemed valid by
the solver can be shown as guidance to the user, or the application can place the new object
immediately on a valid location.

By procedurally adding objects to a layout with this solver, complete virtual worlds can be created
automatically. The procedure defines which objects need to be placed in a particular scene and in
which order. These objects are step by step added to the solver, which in turn generates a new valid
layout. In these procedures, semantic attributes can be used to create specific results. For example, the
procedure can contain an instruction to keep adding cabinets to the kitchen until the sum of the
storage volume attributes of the placed cabinets exceeds a certain value. In Fig. 3, we show a living
room scene generated twice with the same procedure, with and without taking into account some
essential object class relationships, thus exemplifying the importance of these relationships in
creating realistic scenes.

(a) (b)

Fig. 3: A procedurally generated living room: (a) without and (b) with some essential class relationships.
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When a game world has been built up and the game is being played, semantics can improve many
aspects of the gameplay as well. The AI component of the game, which controls all the non-player
characters, can benefit from semantic knowledge. For example, instead of scripting that a particular
character walks to a specific vending machine instance every so often, the behavior of this character
could include the desire to go to an object that can quench thirst. This information, which we call
semantic services, is included in the object classes and is used to support the interaction of the player
with the objects as well, as is explained in [6]. These services specify both the actions the player can
perform on objects and what the effects of these actions are.

Semantics can thus improve modeling of worlds for virtual environments or games in many
different ways, either by aiding the designer while manually editing or by extending procedural
modeling techniques. Semantic data can also provide knowledge for the AI engine or on how to handle
interaction of a player with the objects in a game.

6 OTHER MODELING APPROACHES

There are several other modeling approaches in which semantics is being used as well. This section
shortly discusses some of these approaches, to further illustrate the increasing role of semantics in
object modeling.

In [1] an approach is described to characterize objects with semantic annotations. The surface
mesh of any object can be automatically segmented into surface features. The user can add
annotations to features that express their semantics; for this, an ontology of relevant concepts can be
used, and tools are provided to browse this ontology. Dependent on the concept assigned, specific
properties of a feature, such as certain dimensions, can be automatically computed and added to the
semantic information. Two applications are described: virtual character design, in which a human head
having certain characteristics can be easily retrieved from a repository, and product design via
internet, in which parts with certain properties can be retrieved from distributed data bases, adapted
as needed, and combined into a new design.

In [15] the concept of knowledge-guided NURBS is introduced. The basic idea is that semantics is
added to the mathematical equations traditionally used to represent NURBS. The semantics, or
knowledge as it is called here, includes for all modeling entities information such as:

 the type of the entity, e.g. a circle or a spline;
 how it was created, e.g. by import or offsetting;
 why it was created and what it may be used for, e.g. for intersection or styling;
 irregularities such as cusps;
 properties such as maximum curvature(s), surface area and volume;
 relations between modeling entities, e.g. to relate a set of points to the curve fitted to these

points, or to indicate parallelism between two entities; and
 design intent, e.g. information about the modeling history of the entity.

All this information can be used to support, in particular, more robust computation of NURBS curves
and surfaces. More reliable data transfer between modeling systems becomes also feasible, because
modeling entities can be recomputed from their origins in the receiving system.

Semantics is of major importance in design automation and knowledge-based engineering
systems. Design and engineering knowledge is encoded such that object models can be automatically
synthesized from requirements. Such knowledge is usually described using a procedural or rule-based
approach. A procedural specification is mostly a program in a specialised programming language for
geometric modeling, often tied to a particular CAD system. A rule-based specification is a set of rules,
i.e. modeling operations that are conditionally executed, often in random order, e.g. an L-system or a
shape grammar [19]. Procedural and rule-based techniques are often used for architectural design
[12],[7].

An approach to synthesize mechanical models from functional requirements is presented in [17].
Here, semantics is encoded using a formalism called the Design Exemplar, which can be used to
specify objects with geometric, topological and functional properties. For example, the Design
Exemplar can be used to describe the concept of a gear, and the concept of a gear box. From these
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descriptions it is possible to synthesize gear boxes, with various configurations of gears, such that the
complete system has a given input-output speed ratio.

So, besides in the modeling approaches discussed in Sections 3 to 5, specific types of semantics
are being exploited in several other modeling approaches too, always to improve the modeling process
in one way or another.

7 CONCLUSIONS AND FUTURE DEVELOPMENTS

The use of semantics in object models has been discussed in some detail for several modeling
approaches, in particular feature modeling, modeling families of objects, and modeling virtual worlds.
However, semantics is being used more and more in many other modeling approaches too, and some
examples of this have also been given.

The goals of using semantic information in object modeling are to increase the efficiency of the
modeling process, both the initial model specification and subsequent modifications, to improve the
quality of the resulting models, in the sense that these always have certain required properties, and to
better support applications of the models. The results reported in various papers support that these
goals are feasible.

Which types of semantics are useful depends on the application at hand, but it is obvious that
much more research should be done in this respect. For example, in computer-aided design new types
of semantics may be introduced to fully characterize the properties of products, in particular products
with freeform features or with patterns, and in computer games new types of semantics can be useful
to improve the behavior of object models during gameplay. The desirable types of semantics should
therefore be determined in close cooperation with designers and end users of an application.

For the implementation of semantics, in particular formal semantics, constraints are being used.
New types of semantics may well require new types of constraints, and possibly new constraint
solving and checking algorithms. Developing such algorithms is therefore another important research
area for the future, but also improving the efficiency of the whole constraint solving and checking
process, because otherwise model validity maintenance might become a bottleneck in the design
process.

One particularly interesting research topic is to find a good way to specify semantics for models
with repetitive structures, or patterns. What is needed is a declarative way to specify complex patterns
in families of objects, such that these patterns can be reasoned about. One possibility is to extend the
declarative formalism with a set of pattern types with certain invariant properties.

Besides the applications discussed in this paper, many other applications can benefit from a
semantic modeling approach. We envision a declarative framework for geometric modeling, which can
be used to formally define semantics for a wide variety of applications, ranging from computer-aided
design and modeling virtual worlds, to multi-scale modeling and scientific/medical applications. Such
a framework would consist of a declarative language with basic geometric and topological variables
and geometric and topological constraints. Using this language, application-specific semantics, e.g.
features and modeling operations, can be defined. The framework should provide generic constraint
solving functionality, which can be extended with specific solving strategies to improve performance
for certain applications.
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