
Bringing a pioneer games project to the next level

Rafael Bidarra
Delft University of Technology

Mekelweg 4
NL-2628 CD Delft
The Netherlands

r.bidarra@ewi.tudelft.nl

Jerke Boers Jeroen Dobbe Remco Huijser
Cannibal Game Studios
Rotterdamseweg 145

NL-2628 AL Delft
The Netherlands

{j.boers, j.dobbe, r.huijser}@cannibalgamestudios.com

ABSTRACT
Many universities with a computer science (CS) curriculum
nowadays offer a game development course in a variety of
flavors. However, it is not always clear what is the fundamental
standpoint that leads their particular course design. Delft
University of Technology introduced project-based education in
its CS curriculum five years ago, including a second year games
project. Initially designed as little more than a companion to the
computer graphics course, the games project matured into a large
project integrating a broad range of computer science topics.
More importantly, though, the current games project brings CS
students for the first time to work in a realistic and
interdisciplinary game development team, involving students
pursuing a Game Design and Development degree at the Utrecht
School of the Arts. We believe that the key to the huge success of
our games project lies in the consistent combination of this careful
interdisciplinary organization with the deployment of professional
technology and working environment specifically crafted for an
educational environment. We also conclude that a streamlined
collaboration among students of related disciplines works as a
very powerful catalyst in their personal and academic
development.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education
– Collaborative learning
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, Curriculum
K.8.0 [Personal Computing]: General – Games

General Terms
Design, Experimentation, Human Factors.

Keywords
Games education, interdisciplinary education, game development

1. INTRODUCTION
Five years ago, Delft University of Technology introduced
project-based education in the computer science (CS) curriculum.
One of the new project-based courses was the second year games
project [2]. This games project was initially associated with an
introductory course on computer graphics (CG) and as such the
primary goal was to have students apply computer graphics
techniques in a practical setting.
While first running the games project, it soon became apparent
that it had more potential and a bigger scope than was initially
envisioned. Not only was CG covered, it naturally required
students to learn more about other game related aspects as well.
Because of the potential of the project and the enthusiastic
reaction from the students, the project has been actively improved
over the years. Combined with valuable industry input, the games
project has now matured into a multidisciplinary course covering
all aspects of game development, and therefore better reflecting
real-life game development environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GDCSE’08, February 28–March 3, 2008, Miami, FL, USA.
Copyright 2008 ACM 978-1-60558-057-9/08/02...$5.00.

In this paper we describe and motivate the evolution over the past
five years, from a pioneer to a professional games project, and we
do this from both an academic and an industry perspective. We
start by summarizing the project organization (Section 2),
followed by a discussion about the working environment provided
and the technology deployed (Section 3). Throughout the years,
more and more external partners got involved in the games project
(Section 4). We conclude with an evaluation of the project run
this year, 2007 (Section 5), and with some general conclusions
about running such a games project (Section 6).

2. PROJECT ORGANIZATION
Project-based education very much responds to the basic concepts
behind constructive alignment [3], a rather influential stream, in
particular in higher education, which advocates among other
things that 'students construct meaning from what they do to
learn'. In line with this, an advantage of including such projects in
a curriculum is that the acquisition of knowledge is strongly
motivated by its immediate application in a practical environment.
In addition, it encourages students to actively learn to value and
promote the teamwork process, instead of focusing exclusively on
the final product.

Characteristic of CS project courses is that students have to work
in groups on a more or less open assignment [11]. In our case,
they design and implement a computer game from scratch, using
the technology provided and working in a team (see Section 3).
This section describes how we organized the project as a whole.

2.1 Course goals
At first, the games project had a focus on teaching students to
apply Computer Graphics techniques in practice. However, as
game development involves more than just CG, we wanted the
students to be able to focus not only on computer graphics, but
also on software engineering, artificial intelligence, modeling,
user interaction and other areas involved in game development.

As we strived to continuously improve the project and better
prepare students for work after their study, we also wanted to
make sure that students learned how to work within the context of
a realistic software project, while, at the same, learning how to
cope with the challenges of interdisciplinary collaboration.
Considering this over the past few years, we gradually expanded
the course goals to comprise a wider range of games-related
issues, eventually leading to the current set of learning objectives.
We say they have been achieved when the student has
demonstrated proficiency in:

1. applying media and programming techniques within the
context of computer games, and in relating them to
particular game effects;

2. striving for the balance between the effectiveness of a
programming technique and the desired quality of a
game effect;

3. describing the main modules of a game engine and
purposefully use their functionality;

4. deepening object-oriented programming skills while
building a complex and large software system in an
agile context;

5. developing and contrasting teamwork skills within the
context of a realistic interdisciplinary team.

2.2 Teams
For several years, this project has been run in groups of about 5-7
CS sophomores, who had to handle alone both game design and
implementation. The former not being part of their educational
curriculum or goals, distracted from their work as programmers
and did not allow them to really focus their efforts on the course
goals stated above.

Therefore, in the Spring of 2007 the project entered a new phase:
we started a pilot collaboration with the Utrecht School of the
Arts (HKU), which offers a bachelor degree on Game Design and
Development. Their second year students also have a one-
semester project, focusing exactly on the game design process as
a whole. Integrating their game design project with our game
development project led to one large multidisciplinary project. In
this integrated project, groups consisted of 4 CS students and 5
game design (GD) students. The CS students were mainly
responsible for the implementation of the game, while the HKU
students were in charge of game design and artwork/content
creation; in doing this, they worked as two departments of 'one
single company', with lead programmer and lead designer roles,
respectively, assigned among them.

Integrating these two projects brought much more realism and
power to the project: realism, because it more closely matches the
actual team composition in real-world game developers; power,
because this interdisciplinary collaboration promotes that each
team member contributes with his/her best skills to the project. In
other words, we fully confirmed the value of the splendid advice
recently given by Randy Pausch: "(…) not to turn artists into
engineers or vice versa, but to teach students how to work in
teams that utilize the disparate talents of their members" [9].

These mixed groups, though having clear advantages over
traditional uniform groups, also had some disadvantages; for
example, more time was spent on communication, traveling and
appointments. In particular, everyone in these groups vividly
experienced the additional challenges brought about by
communicating with people from outside your own discipline,
which requires a rather different way of thinking and explaining.

Significantly, after this interdisciplinary pilot experiment, which
although being facultative, was chosen by the vast majority of the
students, all of them were unanimous to recommend that next
year we make it obligatory to work in such mixed teams.

2.3 Project planning
In line with other project courses in the CS curriculum, the games
project at first consisted of three phases: analysis, design and
implementation, where the implementation phase was by far the
largest and most complicated phase. However, students did not
perceive the analysis and design phases as very useful, which can
be explained by looking at game development projects in practice.

Key to designing and implementing a successful game is having
an approach in which you strive to have a playable and working
version of the game as soon as possible: the so called first
playable. After this version is established different gameplay
elements can be tried out and changes can be made to the initial

version. This usually occurs in multiple iterations leading to a
more agile development process [6].

To better accommodate for this process and to make the project
more interesting for students we decided to drop the classical
waterfall style of development. We introduced new phases of a
more iterative nature: spikes, first playable, beta and release.

At the beginning of the project, students have no experience with
the technology and, as they have no prior experience developing
games, no knowledge of what developing a game entails. To
smoothly introduce students to actual game development and the
technology involved, the spikes phase offers room to try out
different concepts and technical solutions, gaining more insight
into important aspects of their game. The first playable phase is
aimed at gaining the first playable by integrating all relevant spike
solutions into one product. Both the beta and release phase are
aimed at refining the previous versions and completing the game.

For the interdisciplinary groups this turned out to be a very
important methodology that enabled both parties to work on their
game together. It not only provided them with the necessary
development cycle that allowed them to continuously (re)design,
develop, evaluate and discuss a “tangible” prototype. It also
allowed the programmers to better cope with the frequently
changing requirements that the creative process of game design
and development brings forth.

2.4 Deliverables
To monitor the progress of the teams and to steer them along an
effective development process, students had to hand-in three
distinct deliverables at the end of each phase:

1. the implementation of the game (working source code);

2. a simple game design document (containing an
explanation of the game and its key features);

3. a technical document (linking the explanation of the
game to the implementation).

As is to be expected from an iterative approach, each of these
deliverables started from a basic version and evolved into the
final product. These deliverables and the team progress also
served as a valuable basis for the final assessment (see Subsection
2.6).

2.5 Focus on requirements
To provide students with a clear direction and a tangible approach
to fulfill the course, a list of requirements was set up. Where this
list initially only contained some general requirements and
computer graphics techniques, the list has been expanded to also
include AI techniques and a number of other game-related
requirements. Students had to make a selection from among these
different requirements, as long as they incorporated all of the
general requirements, two graphics and two AI techniques and
implemented another technique/requirement of choice. These
requirements ensured that students build a 3D game involving
interesting technical challenges.

By offering a wide choice among many game-related techniques
we guarantee that there are always challenging aspects for every
student to explore. This, in turn, encourages students to remain

motivated, to delve deeper into whatever study subjects required,
and to exceed themselves in the implementation of the techniques
of their choice.

2.6 Assessment
Several aspects are important when it comes to determining how
to assess the students work. From the course goals it is apparent
that we not only have to assess the final product, but also the
process. This led to both a product mark and a process mark:

final grade =
6 * product mark + 4 * process mark

10

The product mark takes into account, among other things, the
quality of the game (various aspects of gameplay), the quality of
the software (e.g. architecture, modularity, clarity, choice of
technical solutions), technical realization of the different
requirements and the quality of the project documentation.
Placing a large emphasis on the technical realization supports the
focus on the requirements.

The process mark takes into account the collaboration between
team members (e.g. use of working environment, tasks,
communication with GD colleagues) and the individual
contribution of each group member in the whole development
process (e.g. dedication, initiative, leadership, performance).

To assist the tutors in performing the assessment of individual
contribution and collaboration, the students performed several
peer-evaluations throughout the semester, in which they
anonymously assess each of their group members. Our experience
has steadily confirmed that this peer assessment provides very
valuable, reliable and effective learning elements to each student
[5], in addition to assisting the tutors in their coaching and
assessment responsibilities.

Adding the collaboration component and the quality of the game
into the equation, stimulated students to also focus on
collaboration and get as much out of the group as they could.
Including peer assessment assured that students would be
motivated to cooperate with this collaborative process, thus
avoiding negative peer-reviews.

3. WORKING ENVIRONMENT
An important part of any project is the choice of the supporting
technology to work with. In our games project, this ended up
requiring also support for collaboration within the teams.

3.1 Game technology
At first the project was supported by the open source graphics
engine OGRE [8]. This engine is written in C++, which is
considered the industry standard. But in the context of
“inexperienced” students who have to develop a large and
complex software product, C++ becomes a problem. Students
become more focused on mastering the programming language
than on the development of their game. Furthermore this engine
was an open source graphics engine which, at that time, was hard
to install and lacked quality support and the functionality of a
complete game engine.
To overcome these difficulties, we formed a development group,
and started to work on our own game engine, called Cannibal. A
key aspect of this new engine was that it should favor usability

over raw performance. This should make it not only easier to use,
but also more manageable, both leading to increased productivity
and a better focus on developing the game.
This was also our motivation to choose C# [1] as the
programming language. Although it is not an industry standard in
game development, C# offers good performance and has proven
to be very easy to learn and work with. Complementary to the
choice of C#, the XNA Framework [12] was chosen as the
underlying platform for the Cannibal Engine. XNA not only
enables cross platform development using C# on both Windows
and Xbox360, but it also comes with a convenient development
environment: Game Studio Express.
Together, the Cannibal Engine, a managed language like C# and
the XNA Framework take away a lot of the technical details so
students can focus more on the design of the system and the
project requirements. A better focus on design is especially
convenient for game development projects because they tend to
grow exponentially in complexity as they grow in size.
In 2006, the developers of Cannibal Engine started their own
company, called Cannibal Game Studios, with the main goal of
turning their technology and experience into a professional
product. This product, called Cannibal Experience, is directly
aimed at higher-education institutions, supporting them to use
game development as a means to teach their curriculum. Cannibal
Experience mainly consists of two components, a Game
Development Platform and an Online Collaboration Platform, and
it was designed to facilitate most technological aspects of running
such a project, as well as to provide information on game
development and game education, thus enabling teaching
personnel to concentrate on the learning objectives.

3.2 Collaboration
In early editions of the games project, only a marginal working
environment was provided to the students, leaving the
collaboration up to them. In this way students experienced how
hard collaboration is, but did not specifically learn how they
could go about improving this situation.

As the project evolved into an interdisciplinary project which
included more game development related aspects, collaboration
within each team became even more important. To allow the
students to learn the most about the actual collaboration process,
an integrated working environment was provided in which they
had access to a number of collaboration tools, the most important
of which were a Wiki [4], a Subversion repository [10] and a
bug/task tracking system. The Wiki system allowed for easy, fast
and collaborative editing of documentation for the game and
communication. Students were motivated to keep their Wiki up-
to-date throughout the project. This not only improves the
collaboration between team members but also makes it very easy
to produce their deliverables, by simply extracting document data
from the Wiki. The subversion system was used to share code and
assets among the group and to record the changes and different
versions of the game. The bug/task tracking system also supported
planning and was used to keep track of the project progress. The
team was encouraged to create a milestone for each phase of the
project, and to fill them with tasks assigned to each team member.

The tools presented here did not only provide added value to the
teams, but they are also very useful for the tutors. By supplying

these tools to students, tutors can meticulously follow the
development process of the teams. This provides them with
valuable insight and overview of the course, and helps them
decide when and where to focus their guidance.

4. INDUSTRY INVOLVEMENT
From the beginning of this project we have actively tried to
involve a variety of partners related to game development.
Involvement of real stakeholders from the games industry has
been an important success factor for the project because it
strongly stimulates and motivates students. Furthermore, these
parties enrich the project with game development experience and
technical expertise. For example, we always schedule a number of
guest lectures in which experts from renowned Dutch game
developers (e.g. Streamline Studios, Triumph Studios, W!Games
and Playlogic), tell about their experiences with developing
games, from a wide variety of viewpoints.

Another way of getting the industry involved has been to invite
companies to sponsor the Game of the Year competition, an
exciting contest 'unofficially organized' every year in our faculty
among the participating teams: the basic idea is that the
sponsoring company provides both a jury member and a prize for
the winning team. This scheme not only gets the companies to
promote their games, but above all it helps them get acquainted
with the best skills of our best students.

In 2007 the project has been sponsored by Microsoft Netherlands.
Because the Cannibal Engine is based on XNA, Microsoft
Netherlands donated a number of Xbox360 consoles to the faculty
for use in this project, giving a significant boost to the enthusiasm
of all students. This year was also unique as the students were
given the opportunity to present the games they had created at the
Microsoft DevDays event, in Amsterdam.

5. PROJECT EVALUATION
This year, for the first time, all students of all participating groups
successfully finished the project. As might be expected, the games
developed by the six interdisciplinary groups were significantly
more creative, consistent and appealing than the game of the
single group working alone; however, all games, although
considerably simple, were recognized to be a remarkable result
for a one-semester design and development cycle. Please refer to
the course website [7] for the description and sources of each of
the games produced. See also some screenshots on the title page
of this paper.
From the organization point of view, we very much profited from
the accumulated experience, the biggest challenges having to do
with the novel cooperation with the HKU colleagues, e.g.
appointments, traveling time, language and culture clashes, etc.
However, learning to cope with this diversity was precisely one of
the main reasons for the initial choice, and the general consensus
was that that had been very effectively achieved.
The working environment (see Section 3) was generally
acclaimed as rather helpful and pleasant to most tasks. The
Cannibal engine was, this year, considered as especially
accessible, easy to use and attractive, among other things, due to
the Xbox 360 compatibility. The assistance and supervision tasks
were now more directed towards architecture and conceptual
issues, rather than having to concentrate on technical
programming problems. In addition, quite some extra time had to

be dedicated to the coordination of the interdisciplinary groups, in
order to avoid or overcome conflicts at hand.
First, and most importantly, the five project goals mentioned in
Subsection 2.1 were largely achieved. Indeed, most students
acknowledged having attained a much deeper insight on a variety
of subjects. When asked to indicate the three areas most improved
upon, students mostly indicated media and programming
techniques, ranging from mathematical foundations (55%) to
computer graphics (64%) and AI (45%). Programming and
software design proficiency were mentioned the most (90%).
Although apparently most creative work had been left to the GD
students, CS students quickly realized that they had plenty of
room left to exercise their own creativity, getting the most out of
the engine, e.g. programming many gameplay, physics and
control elements of the game, and overcoming the limited
experience of OO-programming at project start-up. Finally, all
groups recognized that carefully watching over their teamwork
process had made it possible to achieve their successful results.
In Table 1 we summarize several other results of the survey,
highlighting some more concrete, interesting aspects of the
project realization. The table indicates, for each statement, the
percentage of students who subscribed to it. Not surprisingly,
every year many students point out that they would have liked to
spend even more time in order to "get their product really
satisfying", an interesting conclusion that remarkably matches the
reality of many game developer companies.

Table 1 – Summary of survey results

My dedication was (very) great 71%

We were given an interesting assignment 93%

I experienced the powerful capabilities of teamwork 92%

I am satisfied with the product delivered 63%

I learned more from this project than from any other
in the curriculum 75%

The project was more fun than any other in the
curriculum 100%

6. CONCLUSIONS
Five years after the introduction of project-based Computer
Science education at Delft University of Technology, we can
safely conclude that its highly instructive and motivating potential
has been more than confirmed, so much so that various
Departments and Faculties started following the same approach.
Initiated as a pioneer project on computer graphics [2], the games
project, as it is known on campus, has now gained a prominent
role as the integrator course par excellence of the Computer
Science BSc curriculum.
In its current form and organization, including the input from the
game development industry as described in this paper, the project
has achieved a substantial maturity, deploying a professional
game engine, a fine-tuned working environment and very
experienced tutoring assistance. It goes without saying that by
now numerous former CS students of this project have graduated
from Delft and either have found their career in one of the various

Dutch game developer companies, or established their own start-
up companies in the field, as is the case of most authors of this
paper. Furthermore, the increasing reputation and popularity of
the games project is being very effectively exploited by the
Faculty for the urgent purposes of recruiting new CS students.
We believe that deploying adequate game technology,
professionally crafted for this purpose within a carefully set up
working environment, is crucial for the academic success of any
integrated games project as the one described here. Finally, we
can conclude that a streamlined collaboration among students of
related disciplines is a powerful catalyst that can significantly
raise the levels of knowledge, experience and teamwork skills
achieved by the students.

7. ACKNOWLEDGMENTS
The authors are very grateful to all their (former) students for all
their patient and invaluable feedback throughout the years, and to
all colleagues who contributed to the success of this project with
their constructive ideas and criticism. Special thanks go to
Natasha Tatarchuk and Alpana Kaulgud, from ATI Inc., for
generously equipping our CG Lab, and to Maarten-Jan
Vermeulen, from Microsoft Netherlands, for his enthusiast and
supportive involvement in our work.

8. REFERENCES
[1] Bates B (2004) C# as a first language: a comparison with

C++. Journal of Computing Sciences in Colleges, 19 (3): 89-
95

[2] Bidarra R, van Dalen R, van Zwieten J (2003) A Computer
Graphics pioneer project on computer games. Proceedings of
CGME 2003 - Workshop on Computer Graphics,
Multimedia and Education, 8 October, Porto, Portugal, pp.
61-65

[3] Biggs J (1999) Teaching for Quality Learning at University.
SRHE and Open University Press, Buckingham

[4] Leuf B, Cunningham W (2001) The Wiki Way. Quick
Collaboration on the Web, Addison-Wesley, Boston

[5] Liu, N-F, Carless, D (2006) Peer feedback: the learning
element of peer assessment. Teaching in Higher Education,
11(3): 279-290

[6] Martin RC (2003) Agile Software Development: Principles,
Patterns and Practices. Prentice Hall, Upper Saddle River,
NJ, USA

[7] MKT4 project website, Delft University of Technology.
http://graphics.tudelft.nl/~mkt4/

[8] OGRE, http://www.ogre3d.org/
[9] Pausch R, Marinelli D, (2007) Carnegie Mellon's

Entertainment Technology Center: combining the left and
right brain. Communications of the ACM, 50 (7): 50-57

[10] Pilato M (2004) Version Control With Subversion. O'Reilly
& Associates, Inc., Sebastopol, CA, USA

[11] Schaefer S, Warren J (2004) Teaching computer game design
and construction. Computer-Aided Design 36 (2004): 1501–
1510

[12] XNA, http://msdn.microsoft.com/xna/

