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Abstract

Splines are part of the standard toolbox for the approximation of functions and curves in RY. Still, the problem
of finding the spline that best approximates an input function or curve is ill-posed, since in general this yields a
“spline” with an infinite number of segments. The problem can be regularized by adding a penalty term for the
number of spline segments. We show how this idea can be formulated as an {y-regularized quadratic problem. This
gives us a notion of optimal approximating splines that depend on one parameter, which weights the approximation
error against the number of segments. We detail this concept for different types of splines including B-splines and
composite Bézier curves. Based on the latest development in the field of sparse approximation, we devise a solver
for the resulting minimization problems and show applications to spline approximation of planar and space curves

and to spline conversion of motion capture data.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Splines

1. Introduction

Splines are widely used in graphics for the approximation
of functions and parametrized curves. They combine an ef-
ficient representation of “smooth” functions by few param-
eters and with good approximation properties: under refine-
ment, interpolating splines converge to a (smooth enough)
function in various norms. Here we consider the question
of optimal approximating splines in a general setting, where
not only variations of the spline parameter, but also of the
number of spline segments and the locations of the knots are
allowed. In this setting, the problem of finding the spline that
best approximates a smooth function is ill-posed in the sense
that by refining the spline, the approximation error can be re-
duced, and, thus, the limit of a minimizing sequence is not a
spline anymore. The problem can be regularized by adding
a penalty for the number of spline segments to the objec-
tive functional. This means we are looking for a compromise
between approximation error and the number of spline seg-
ments.

We derive a discrete version of the regularized problem,
in which the domain of the spline is uniformly sampled and
the feasible set is restricted to splines whose knots are grid
points. We show that the discrete problem can be written
as an {p-regularized minimization problem. In this setting,
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splines are represented by their function values (and depend-
ing on the type of spline also their derivatives) at the grid
points. The main ingredient to our modeling of the optimiza-
tion problem is a linear operator on the space of functions
on the grid that has the property that the ¢yp-norm of the im-
age of a function agrees with the number of segments of the
corresponding spline, which interpolates the function values.
We show how such an operator can be constructed for differ-
ent families of splines including B-splines, composite Bézier
curves, splines in tension, and wiggly splines.

In recent years, the /{y-regularization of optimization
problems has received much attention and many efficient
algorithms for approximating the solutions have been pro-
posed. Formulating the optimal spline approximation prob-
lem as an {p-minimization problem allows us to use this
rapidly growing pool of algorithms for computing optimal
splines. Moreover, we see a connection between optimal
spline approximation and recent schemes for image and ge-
ometry denoising, which yield a similar type of optimization
problem. We have tested various algorithms for solving the
{y-regularized optimization problem and propose a variant
of the recent scheme by Patrascu and Necoara [PN14]. We
tested our implementation for spline approximation of pla-
nar and space curves and for spline conversion of motion
capture data.
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2. Related work

Optimal splines. The computation of optimal approximat-
ing splines comes at different complexities depending on
what parameters of a spline are varied. Typically, only the
parameters the spline depends linearly on are optimized,
which leads to linear least-squares problems. For B-splines,
this means that a knot vector is fixed and the remaining pa-
rameters are optimized. Latest solvers for this problem can
compute highly accurate solutions within few milliseconds
even for a large number of points [DL14]. However, the ap-
proximation can be greatly improved by treating the knots as
free variables, see [dB73,Bur74,Jup78] for some early work
in this direction. The task is to find an optimal knot vector,
in the sense that the best approximating spline on this knot
vector yields the lowest approximation error among all other
splines with the same number of knots. Strategies to find an
optimal knot vector can be roughly classified in three cate-
gories:

e The knot vector is iteratively extended using heuristics,
such as integrated discrete curvature [LLXZGO05], largest
accumulated £, error on a segment [DL14], or others
[YWS04,LM88, Vas96]. These methods often require ini-
tial knot vectors, user-defined error bounds and other pa-
rameters.

e An existing spline gets simplified by iteratively remov-
ing knots from the knot vector (knot removal), see e.g.
[LMS87]. In each iteration, the knots get ranked via some
heuristic criterion and then greedily removed, while main-
taining some prescribed proximity to the input curve.

e The knots are regarded as additional free variables (sub-
ject to appropriate constraints) and the approximation er-
ror of the best spline using these knots is minimized. This,
however, leads to a very involved minimization prob-
lem (cf. [dB73]), and the latest attempts at solving it use
genetic algorithms, which interpret the knot vectors as
populations which undergo mutations [ZZYL11, SRO1,
MYH99, YHYO03] or apply particle swarms [GI11].

Our method differs from these approaches in that we are nei-
ther limited to B-splines nor is there a need to use explicit
geometric constructions or any heuristics in our formula-
tion to find the target set of points which we use to create
the spline approximating the input curve. Furthermore, we
do not need to fix the number of knots, but keep it vari-
able. By discretizing the parameter interval, we are able
to reformulate the optimal spline approximation problem
as a {y-regularized quadratic minimization problem. This
opens the door to using recent approximation algorithms for
{p-minimization for optimal spline approximation. For arc
splines—curves consisting of a finite sequence of circular
arcs and line segments—a geometric approach for approxi-
mating a sequence of points by a G'-continuous arc spline
with a minimum number of segments has been recently pro-
posed by Maier [Mail4]. Contemporaneous to our research,
Kang et al. [KCL"15] proposed an equivalent reformulation

of the optimal spline problem for the case of B-splines in one
dimension. However, they replace the {y-regularized func-
tional by an /;-regularized functional. We further discuss
and compare the £y- to the /;-regularization in Section 5.

Optimal polylines. Optimal approximation by polylines
has a more local character: changing the position of knots
will have no global effect on the solution, as is the case for
splines, where differentiability conditions introduce global
dependencies. This local property of polylines (and other
types of curve which are only demanded to be continuous)
allows the use of Dynamic Programming algorithms, which
can give optimal approximations (given either a maximum
number of segments, a cost per segment or a maximum ap-
proximation error in the ¢, or {~, norm) by polylines [PV94,
GBO04], line segments and circular arcs [Kol12, Mail4], or
piecewise polynomials [MJEMO2].

{p-Minimization. Sparsity-regularized and constrained
convex optimization problems are the focus of recent re-
search, see e.g. [PN14, BBR11, BE13]. Though such opti-
mization problems are known to be NP-hard, various effi-
cient approximation algorithms have been proposed in re-
cent years, see [BD10, Foull, XLXJ11,CJPT13,PN14] and
references therein. Whereas typically sparsity is demanded
in the variable which is minimized, in our case, we want to
apply the regularization on a linear transform of the vari-
able. This type of minimization has been considered in re-
cent sparse image processing [XLXJ11, NNZCO08] and ge-
ometry processing [HS13] applications. The problem has
been analyzed and several algorithms have been proposed
[CIPT13, XLXJ11, BM98]. We applied, adapted and com-
pared several of these recently proposed algorithms to ap-
proach our specific {y-regularized minimization problem.

3. Optimal spline approximation via /j,-minimization

Our approach for optimal spline approximation can be ap-
plied for various types of splines, including B-splines and
composite Bézier curves. In this section, we first outline a
continuous version of the optimization problem and then in-
troduce the {y-minimization problem, which is a discrete
version of the continuous problem. We explicitly describe
the optimization problem for C? cubic B-splines and com-
posite cubic Bézier curves. Finally we discuss the general-
ization to other types of splines.

Continuous problem. Letus consider a parametrized curve
¢: 1 — R Here I is either [0,1] in the case of curves
with boundary, or [0, 1] /o1 (the unit interval with identified
boundary) in the case of closed curves. Our goal is to con-
struct a spline s : / — R that is an optimal trade-off between
the approximation of ¢ on the one hand and the number of
spline nodes on the other hand (a node being an interpolation
point together with the corresponding parameter value). For
this, we consider the functional

E(s) = lle —sll7, +Av(s) 1
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(a) A =50-10"2, 9 points, (>-error ~ 3.80- 10~

=4

(b) A=1.05-10?, 17 points, ¢,-error ~ 7.82-10~°

Figure 1: Cross section of a Beetle, 500 points, approximated using composite cubic Bézier curves generated with our method.

where V(s) is the number of nodes of s and A € R. Then
an optimal approximating spline is a minimizer of the func-
tional among the set of all splines of one type. The parame-
ter A provides control of the complexity (number of nodes)
of the spline. The optimal spline has the property that there
is no spline § with v(§) > v(s) such that the approximation
error ||c — 5“%:2 is decreased by more than (V(5) — v(s))A.

B-spline functions. We consider a discretized version of
the optimization problem. For simplicity of presentation, we
describe the case of C? cubic B-spline approximation of
functions first, and generalize to other types of splines and
the approximation of curves in R later.

Let f; <t < --- <ty be a dense uniform partition of
the interval /. The data we want to approximate is a set
of N function values p; € R, with corresponding parame-
ter values f; € I, e.g., a sampling of the continuous input
function. A C? cubic B-spline can be characterized as the
unique (C 2_continuous) cubic spline that interpolates a set of
N nodes (;,¢;) € I x R and satisfies certain boundary condi-
tions. Computing the corresponding control points amounts
to solving a linear system of equations. Here, we will repre-
sent a cubic spline by the choice of the interpolating points
and times. To be able to optimize over a set of cubic splines
with a variable number of segments and variable nodes, we
restrict the 7; to be values of the aforementioned partition
of 1. With this restriction, any cubic spline s can be repre-
sented by the vector g € RY listing the images g; = s(f;) € R
for all #;. For any ¢, we call those ¢; that are not nodes of the
spline corresponding to g the inner points of q.

The inner points can be characterized as follows: Let s(r)
be a cubic spline, interpolating the nodes (1;,g;), i.e. s(t;) =
gi, with some prescribed boundary conditions at #; and ty,
and now assume that s’/ (¢) is continuous at = ¢; for some
Jj €2,...N—1. Then the cubic polynomials s(t)|;cp;_, ]
and s(t)|;¢,;,,) are the same, since the values and all
three derivatives at ¢ = ¢; agree. This means that the cu-
bic splines interpolating the nodes {(¢1,41),...(t,qn)} and
{(t1.q1),.-.(t1,9n)} \ (¢j,q;) are the same. Conversely, if for
some ¢ the third derivative s has a discontinuity, then s(t)
must be a node of s. So we have that ¢; is an inner point
if, and only if, the third derivatives of s from the left and
from the right of #; agree. This condition is linear in the co-
ordinates representing the spline, so there is a linear operator
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C:RY — R" with the property that g; is an inner point, if
and only if (Cg) ; = 0. The operator C depends on the choice
of boundary conditions. In the appendix, we discuss the con-
struction of this operator explicitly. Given a vector g € RV,
we can construct the resulting cubic spline by interpolating
all nodes of ¢ (those for which (Cq) ; # 0) by a cubic spline s
with appropriate boundary conditions. Then, all inner points
of ¢ will lie on this resulting spline.

The number V(s) of nodes of the cubic spline s corre-
sponding to a vector ¢ € RY agrees with the {yp-norm of Cgq.
Our discrete analog of the energy (1) is

E(q) = llp—qlI7, + XIICqlly, @

where p € RV lists the input data points. Computing an opti-
mal approximating spline amounts to minimizing (2) over all
geRY and computing the cubic B-spline s corresponding to
the minimizer ¢. In the case that the interval is / = [0, 1], one
can additionally enforce interpolation of the boundary, i.e.,
q1 = p1 and gy = pn. Boundary conditions on the deriva-
tives are incorporated into the operator C and the reconstruc-
tion of the spline s from a vector g.

B-splines curves. To approximate curves in RY, our con-
struction remains almost unchanged: the curve samples p;
and our spline representation ¢; are elements of R? and we
write the list of points p and g as N X d matrices. This way,
the energy (2) remains the same except that the £, norm gets
replaced by the Frobenius norm ||-|| -, and the £ term is in-
terpreted row-wise, i.e., ||Cql|,, counts the number of rows

of Cq € RN*? which contain non-zero entries.

Composite cubic Bézier curves. For composite cubic
Bézier curves (CCBC), the derivation is similar to that of B-
splines. These curves are composed of cubic polynomials,
but instead of demanding the second derivative to be con-
tinuous, first derivatives at all nodes can be prescribed. As
for the B-splines, we represent CCBCs with a variable num-
ber of nodes, by storing g; = s(;) for all # of the uniform
partition of /. However, for representing the CCBCs, we ad-
ditionally store the derivatives q;- =s'(t;). Then, any CCBC
whose nodes are a subset of the partition #;,1;,. ..,y can be
reconstructed.

For initialization, the g}s can be estimated from the input
data p or explicitly computed if the input is a parametrized
curve. Then, we search for an optimized set of points
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and derivatives (g,¢’), which means that the conditions for
points to be inner points are posed on g and ¢'. The char-
acterization of the inner points for CCBCs is similar to that
for B-splines. However, in contrast to the case of B-splines,
the second derivative is not guaranteed to be continuous, and
thus we have to pose two conditions on inner points, namely
that the second and third derivatives are continuous at the
corresponding #;. Again, these conditions are linear and can
be formulated via a linear operator C : R?N — R?M such that
p; is an inner point, if (C(p,p"))x = 0 and (C(p,p’)); =0,
where k and [ are the indices of the rows in C(p, p’) which
are associated to the condition that the second and third
derivatives are continuous at ;. The construction of the op-
erator is discussed in more detail in the appendix. Using it,
we can formulate the energy associated to CCBCs as

E(g,9") = llp—allz +1[Ca.4)],, - 3)

where the { term is now counting the number of points for
which one or more of the 2 - d conditions are not satisfied.
To compute an optimal CCBC, we minimize the energy (3)
over all ¢ and ¢’ and reconstruct the CCBC from this data.
Boundary conditions can be enforced by imposing equality
constraints onto q1, g, ¢, and gjy.

Other spline types. B-splines and composite Bézier curves
of higher order can be treated in the same vein as above, by
introducing more conditions per point and potentially addi-
tional variables.

More types of splines can be covered by the following
construction: suppose, that the interpolating spline through
the nodes (g;,#;) is the minimizer of some energy E :
c*([0,1]) — R, subject to the interpolation constraints. For
example, cubic splines are minimizers of the quadratic func-
tional F(f) = fol || )] ’, f € C%, subject to f(1;) = g;.
Furthermore let s, : [0,1] — R? be the interpolating spline

Figure 2: Comparison of our method to equidistant interpo-
lation points. Left: input (500 points), middle: our method,
cubic spline through 100 points, right: cubic spline through
100 equidistant points. On the right side are magnified re-
gions of our result (left boxes) and the equidistant result
(right boxes).

)

Figure 3: Comparison of our approximation method for cu-
bic B-splines (left, 42 points) and CCBCs (right, 27 points)
on the silhouette of a bust of Max Planck, 300 points, A =
410~ for both spline types.

e

Figure 4: The silhouette of a bust of Max Planck with ex-
treme noise (300 points) approximated by a cubic B-spline
(left) and a CCBC (right) using our method with A = 60 -
1077

through the points ¢ (for some fixed parameter values #;) and
E(q) = E(sq). Then the gradient mapping of £ can be used
as the operator C, since if the gradient is O at a point, the
interpolation constraint of this point can be left out, yield-
ing the same minimizer. Thus it is an inner point. Applying
this construction to cubic splines, yields the same matrix C
as constructed in the appendix. Another example for such
a spline type are splines in tension [Sch66, HP04], which

are minimizers of the quadratic functional fol ( f”(t))2 +
wfy (f'(t))z, f € C?, subject to f(t;) = g;. In Figure 5, we
demonstrate the effect of varying u and using our method to

produce optimal approximating splines in tension. Wiggly
splines [KAO8,HSvTP12,SvISH14] interpolating the nodes

(gi,t;) are minimizers of fol (f"(0)+8f"(1) +§f(t))2, fe
C?, subject to f(;) = ¢;, and thus there is a corresponding
matrix C characterizing inner points for wiggly splines.

To construct the matrix C for these types of splines, one
first needs to find the matrix A which maps the point coor-
dinates to the coefficients of the interpolating spline. This
matrix will depend on the #;, the parameters (u for splines
in tension and 8, for wiggly splines) and possible bound-
ary conditions. Since the energy characterizing the splines
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Figure 5: Testing our method on splines in tension. In read-

ing order, we set u=0,0.1,0.5and 1. A =0.5- 10~2 was
used in all cases.

is quadratic, it comes from a linear system of equations de-
scribing the relation between interpolation points and spline
coefficients. Then we get C = A’ BA, where B maps the
spline coefficients c to the value of the energy via " Be.

4. Numerical optimization of ¢)-regularized problems

In recent years, many approximation algorithms for ¢y-
regularized problems have been developed. The classical ¢y-
regularized optimization problem is

opt :arg;ninf(q)+7‘f”q“€0 “)

q

where f(g) is a convex function [PN14, BBR11, BE13]. In
our case, however, we want to find solutions where Cq is
sparse, i.e.,

q"pt = argmin f(¢) +MA||Cql|, ®)
q

where f(g) is the squared ¢, distance of g to the input
points p, and C is a linear operator which might not be
invertible—as, for example, is the case for the matrices re-
sulting for cubic B-splines and CCBCs described in the pre-
vious sections—so algorithms which solve equation (4) can-
not be applied directly.

Figure 6: Comparison of a CCBC generated by our algo-
rithm to a CCBC on equidistant nodes on the outline of
Bahrain (2000 points).
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Luckily, energy functionals of the form (5) have received
much attention in the graphics and vision community, where
they are used for sparse image recovery and smoothing
[CIPT13,XLXJ11,NNZCO08] and mesh denoising [HS13].

We implemented and compared several algorithms, in-
cluding

e a method proposed by Xu et al. [XLXJ11] (¢y-gradient-
minimization), where an auxiliary variable is introduced
and minimization is alternated between two modified ver-
sions of (5);

e a majorize-minimize subspace algorithm with ¢,—/( reg-
ularization [CJPT13], where the ¢y term is replaced by
a differentiable approximation term, and the functional is
then minimized using a subspace gradient-descent method
with a majorize-minimize step size search;

e a slightly modified hard-thresholding pursuit algorithm
inspired by [Foul 1,BD10], where we performed a change
of variables § = Cq, computed the gradient of £(C~'g) by
interpreting C —‘q as a least-squares solution of § = Cq
subject to Y ¢g; = 1, and then finding the optimal spline
through the points with the largest gradient in these coor-
dinates;

e a greedy matching pursuit algorithm [BM98], where we
iteratively add a small group of points as nodes (by re-
moving the corresponding conditions (Cq); from a list of
all constraints), which was best (in terms of the ¢, error)
among a random selection of point groups;

e amodified random coordinate-descent method inspired by
[PN14], which we will cover in more detail below;

For most experiments conducted in Section 5, the random
coordinate-descent algorithm yielded the lowest values of
the energy functional. The algorithms that do not directly
control which entries of Cgq are set to O (the first two listed)
are problematic, since it is difficult to decide which points to
use as nodes in the end.

Thus, our proposed solver uses a modified version of
the method introduced by Patrascu and Necoara [PN14],
who aim at minimizing (4) by a random coordinate-descent
method. Our modified algorithm—aimed to minimize (5)—
is summarized in Algorithm 1. We avoid a change of vari-
ables, since for our matrices C this results in an unstable al-
gorithm. Instead we transform the minimization step in each
iteration into solving a linearly constrained quadratic pro-
gram.

In our final implementation, we choose the random points
from a shuffled list of all points and stop after all points
have been visited once. (As an optional last step, one can
revisit all still unconstrained points again and check if they
can be constrained without increasing the energy by more
than A.) This means that we have N steps, and in each step a
quadratic functional has to be minimized subject to at most
2N d linear equality constraints. The method is straightfor-
ward to implement, and the constrained minimization re-
quires only solving a linear system. The quadratic programs
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Data: Set of points p, sampling of the input curve.
Result: A minimizer p°* of (5)

L <— empty list of indices of vertices to be constrained;
p—n;

repeat
Choose an index k € {1,...,N} \ L;
L+— L;
L<+— LU{k};
Solve p°' = argmin,, [|g — pl|? subject to the constraints

(Cq)k = (0,...,0) € RY for all k € L;
if || p' — p[|> — || — p||* < \ then
| P,
else
| L+ L
end

until convergence;
Algorithm 1: Our modified random coordinate-descent
method for /y-regularized optimization

to be solved in each iteration are related since at most one
equality constraint is added per iteration. Therefore, instead
of solving the whole problem in every iteration, informa-
tion from the previous iteration can be used to speed up
the computation (e.g. updating of the matrix factorization
of the previous iteration instead of computing a new fac-
torization). Such procedures are provided by various opti-
mization libraries—we used MOSEK [AAOQ0]. The average
times for solving the quadratic programs in different scenar-
ios are listed in Table 3. Minimizing the ¢y-regularized en-
ergy via a random coordinate-descent can be regarded as a
variant of traditional knot removal techniques. However, this
relation to knot removal techniques is specific to the random
coordinate-descent solver. In this sense, the £y-formulation
we introduce opens a door for using solvers like matching
pursuit or {y-gradient minimization for knot removal. This
could be particularly helpful when removing knots from
a spline with a large number of knots since the number
of iterations required by the random coordinate-descent (as
well as knot removal techniques) depends on the number of
samples of the input curve (knots of the input spline). In
this case, other solvers for the {y problem (e.g. {y-gradient-
minimization), for which the required number of iterations
does not directly depend on the number of sample points,
are an alternative.

5. Experiments and comparisons

In our experiments, we scaled the curves to have unit arc
length and sampled them equidistantly, densely enough to
preserve the details of the input curve. All relevant values
of the depicted experiments can be found in Table 1. Addi-
tionally, in Figure 10, we plot the ¢, error and the resulting
number of points of the result of our method (using cubic
splines) against various values of A. From this, it can be seen
that A determines the degree of detail in the approximating

soe

Figure 7: A cross section of the rocker-arm model with 500
points and 17 points marked as discontinuities in the first
derivative (left). Optimized composite cubic Bézier curves
with (middle, 26 points) and without (right, 33 points) these
discontinuities, for the same value of A.

curve as expected: the higher we set the cost per segment,
the fewer points we get, at the cost of higher ¢, errors.

Figures 1 and 3 show how our method smartly places
points in order to reduce the ¢, error. Figure 1 shows the ef-
fect of decreasing A: as the cost per segment becomes lower,
more segments are placed in favor of improving the approx-
imation of the input curve. We found that A = 107? gave a
good balance between the number of points and accuracy of
the approximation for curves of unit arc length, but of course
the value has to be adjusted for specific tasks and depending
on the demands of applications. While it is possible to ad-
just the level of detail via controlling the desired number of
nodes, we found that it is more intuitive to set a cost per seg-
ment, since this is a measure that transports over all curves
of the same total length. Figure 3 compares cubic splines to
CCBCs when approximating a curve using our method with
the same value of A. Note that CCBCs need considerably
fewer nodes to achieve the same level of detail. However, at
each node we specify the position as well as the first deriva-
tive of the spline, instead of just the position.

Figure 8: Results of our method with weighted ¢, norm.
Left: input with marked points in purple, middle: cubic
spline through 49 points using weighted ¢, (weight 100 at
the marked vertices, 1 elsewhere), right: cubic spline from
49 points using standard /5.
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Figure 9: The Hiragana “wo” with 500 points and 9 points
marked as discontinuities in the first derivative (left). Com-
posite cubic Bézier curves received from our algorithm with
(middle, 29 points) and without (right, 39 points) these dis-
continuities. Both approximations have similar /. error.

Our method is robust to noise: one can adjust A such that it
captures all desired details but not the noise, and the interpo-
lated points will be chosen and arranged such that a smooth
curve with minimal /, distance is achieved. This is demon-
strated in Figure 4 for both CCBCs and cubic B-splines: no
noise is visible in the results while most of the curve’s char-
acteristics are still intact.

Figures 7 and 9 show the flexibility of our method: by
simply modifying the constraints of certain points (which
means changes to the operator C), we are able to specify
points at which we allow the CCBC to have discontinuities
in the first derivative, which is very useful if sharp edges
need to be modeled, as in these examples. The results are
compared to the case where no discontinuities in the first
derivative are allowed. In Figure 8, we used a weighted ¢,
norm: some points were assigned a higher weight such that
in the resulting cubic spline we captured the details in these
parts very closely, while saving points by approximating the
rest only roughly.

In Figure 12, we test our algorithm on a large set of
three-dimensional densely sampled curves which represent
smooth feature lines on a scanned mesh. This example also
shows the advantage of the /y-regularized minimization: in-
stead of having to choose a fixed number of points for every
curve on the mesh, we fix the parameter A once and obtain a
comparable level of detail across all resulting splines.

As another application, we applied our algorithm to motion-
capturing data. The data describes the motion of a human

Name (Fig.) Type 0 R | A-10° | fr-error { o -€rr0r
Beetle (1a) CCBC 500 9 50 | 3.80-10~% [ 0.00288
Beetle (1b) CCBC 500 17 1.05 | 7.82-107° | 0.00289
Max-Planck (3, 1) Cubic 300 42 4| 3.87-107° | 0.00318
Max-Planck (3, r) CCBC 300 27 4| 2.82-107° | 0.00383
Silhouette (8, m) Cubic* 500 49 18 | 6.75-107° | 0.00510
Silhouette (8, r) Cubic 500 49 5| 422:107° | 0.00758
Noisy Max-Planck (4,1) CCBC 300 18 60 | 2.11-10~* | 0.00759
Noisy Max-Planck (4,r)  Cubic 300 26 60 | 2.29-10~* | 0.00759
Hiragana “wo” (9, m) CCBC** 500 29 15 | 8341075 | 0.00448
Hiragana “wo” (9, 1) CCBC 500 39 4| 3.50-107° | 0.00446
Rocker-Arm (7, m) CCBC** 500 26 2 | 6.11-1075 | 0.00151
Rocker-Arm (7, m) CCBC 500 33 2 | 2.04-107° | 0.00237
3D Feature-lines (12) CCBC 2033 154 1000 | 6.24-107° | 0.00251

O =# pts of input curve, R = # knots of spline, *=weighted {5, **=w/ disc. in Ist deriv.

Table 1: Data for the experiments.
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CCBC | Cubic | Cubic w/lumped
mass matrix

250 pts. 32 10.4 2.0

500 pts. 7.4 33.6 4.6
1000 pts. | 20.1 79.4 11.9

Table 3: Average times (in milliseconds) for solving the
quadratic program in each iteration of Algorithm 1

performing capoeira over 400 frames (13.3 seconds at 30
frames per second). It contains the position of the midpoint
and 3-dimensional angles of 28 joints between various parts
of the body, resulting in 89D data (cf. Figure 13). First, we
approximated the data using one CCBC for the position and
one for each angle, resulting in 29 3-dimensional splines. We
chose A such that the approximating splines had 25 nodes on
average, which led to an approximation error of 6.51 - 104
(the data was normalized to have unit arc length as well). Vi-
sually, the animation generated by the approximating spline
is almost indistinguishable from the input animation, which
can be seen in the supplementary video. Additionally, we
used our algorithm to smooth a part of the animation in
which the human was visibly trembling: after approximat-
ing 100 frames through one 89-dimensional CCBC with 20
nodes, the primary motion of the human was still completely
intact while all trembling was gone.

Experimental comparisons. We compare the performance
of different solvers for the ¢y-regularized optimization prob-
lem (2). In addition, we compare the results of the ¢y-
minimization to results produced by alternative (recent and
traditional) techniques for knot optimization. For a set of in-
put curves, we produce cubic splines with the same number
of knots using all the methods and measure the resulting £5-
errors. The results are listed in Table 2. In addition to Algo-
rithm 1, we used the following methods:

e A matching pursuit algorithm, where instead of iteratively
removing knots, we build the set of unconstrained nodes
by greedily unconstraining the best (in terms of lowest re-
sulting energy functional value) cardinality k set, among
m randomly chosen cardinality k sets. For the compar-
isons we used m = 500,k = 3 throughout. Note that eval-
uating the candidate sets in each iteration takes as long as

Lyeror
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(a) £, errors for various val- (b) Number of points for
ues of A various values of A

Figure 10: Results of using our method on a 150-point curve
for A € [0,100- 10~7], for cubic splines.
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£y optimizer Other techniques
Input curve #pts  #knots Algorithm 1 Match.Purs. Ly-gradient-min. {)-reg. PSO [GI11] [DL14] MATLAB OPTKNT
Max Planck (Fig. 3) 300 48 | 2.7587-107°  3.6802-10 5  2.8661-107° 5478910 ° | 4.4474-10° 3.6980-10 > 6.6168-10°
Cross Section (Fig. 11) 500 48 | 1.8336-107°  3.3407-107°  1.3729.10°  4.9466-107° | 4.2251-107° 3.6252-10° 6.1692-107°
Silhouette (Fig. 8) 500 97 | 1.2066-107°  1.3967-107°  1.0834-10°  1.2337-107° | 1.9649-107° 1.2797-10° 25114-107°
Bahrain (Fig. 6) 2000 137 | 1.2070-107°  1.6341-107° 1.5947-107>  3.0374-107° | 1.5633-107°  1.2395-107° 1.7437-107°
Hiragana (Fig. 9) 500 52 | 5.6206-107° 5.3876-10°  6.9553-107°  8.3407-107° | 5.7682-10"° 6.1827-10° 7.2012-107°

Table 2: Data for comparisons of different /y-minimizers and other spline optimization techniques. For a set of input curves,
the ¢,-errors to the resulting cubic splines are listed. In every row, all splines have the same number of knots.

m full iterations in Algorithm 1, which is why this method
is only feasible for a small number of desired knots.

e We minimize energy (2) using the aforementioned ¢y
gradient minimization method proposed by Xu et al.
[XLXJ11]. The direct results of this method often yield
large clusters of nodes, which we address by using a
cleanup step after the optimization: we check, for each re-
maining unconstrained point, whether removing the knot
improves the energy. In many cases, the resulting opti-
mizer performs as well as (or sometimes better than) Alg.
1. However, it depends on various parameters that need to
be adjusted for each curve.

e When replacing the {y-term in energy (2) by an /| term (as
proposed in [KCL"15] for the 1-dim. splines), the result-
ing convex energy can be minimized directly by solving a
quadratic program. However, in this formulation, A can no
longer be interpreted as the cost per segment, but it needs
to be experimentally adjusted to achieve the desired level
of detail. Furthermore, large values in Cp get punished,
which is not desired and leads to over-smoothing of the
resulting curve. Also, there is no clear way to couple the
constraints for the coordinates of the same node, which
typically leads to clusters of unconstrained points. These
problems can cause bad performance, an example is the
large error for the approximation of the Bahrain-curve.

e For the case of B-splines, our ¢y problem is addressing the
free-knot optimization problem, so it is natural to com-
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Figure 11: A curve approximated by a cubic spline using our
algorithm and using a refinement technique from [DL14],
such that both results produce similar ¢, error to the input
curve. From left to right: input curve, cubic B-spline from
our algorithm with 65 nodes, cubic B-spline from the refine-
ment method in [DL14] with 102 nodes.

pare to recent techniques which aim at directly minimiz-
ing the ¢5-error over a fixed number of nodes. Galvez et
al. [GI11] report that this results in a difficult multimodal
and multivariate nonlinear optimization problem, and they
try to find an optimal knot vector by using particle-swarm
optimization (PSO). We apply their algorithm using the
proposed parameter values, namely 100 particles, 10 iter-
ations, Y12 = 2, w = 0.9...0.4. While the PSO performs
well if the number of desired knots is small, it becomes
infeasible for a larger number of knots.

e The refinement algorithm proposed in [DL14] that iter-
atively adds knots to an approximating cubic B-spline
(starting from a cubic B-spline defined on a sparse knot
vector) by placing them on the segment of the spline on
which the ¢, error is largest, specifically at the parameter
value, where the accumulated ¢, error reaches half of the
total error on this segment. While performing comparable
to our algorithm on curves with fairly constant level of
detail, it often produces knots at unnecessary places (see
Figure 11) for other types of curves.

e As a comparison to a traditional technique, we con-
sult the MATLAB function OPTKNT which computes
an “optimal” knot sequence “in the sense of Mic-
chelli/Rivlin/Winograd and Gaftney/Powell” [GP76].

For all tested examples, one of the {y-optimizers yielded the
best result, which justifies our reformulation of the optimal
spline problem.

D »

Figure 12: Feature lines on a surface, left: input feature lines,
right: optimized CCBCs with 154 vertices.

6. Conclusion

We introduce a new approach for computing optimal ap-
proximating splines, where spline coefficients, positions of
nodes, and the number of spline segments are variable. The
approach can be used to optimize different types of splines

(© 2015 The Author(s)
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including B-splines and composite Bézier curves. Our mod-
eling of the optimization problem yields a {y-regularized
quadratic problem for which we devise a solver based on the
recent scheme of Patrascu and Necoara [PN14]. We present
results produced with our implementation for the approxi-
mation of planar and space curves, and spline conversion of
motion capture data.

Limitations and challenges. One direction of future work
is to find a convex approximation of problem (2), e.g. using
weighted ¢;-norms. This could potentially lead to a very fast
tool for optimal spline approximation. A limitation of our
current approach is that for B-splines, it cannot deal with
multiple knots. One idea of how to integrate multiple knots
is to allow for lower regularity than C 2 (for the case of cubic
splines) at nodes, but to penalize lower continuity. We leave
this problem as future work. Our tool could be used to con-
vert curves (e.g. hand-drawn outlines of shapes) into CCBCs
(or other splines types), which can be used for curved edit-
ing. It would be interesting to experiment with other norms
for the approximation of the input curve. The ultimate goal
would be to design a norm such that our tool places the nodes
in locations where an artists would place them. Another di-
rection for future work is to extend the approach from curves
to surfaces.

Appendix A: Explicit Constraint Operators

Cubic splines. We will now construct the operator C for
cubic splines, which will have the property that (C(q)); =0
if the point g; is an inner point. To this end, we need the
operator A which maps a set of points to some represen-
tation of a cubic spline. We represent the cubic spline by
its second derivatives q;/ at the points g; (which determine
the spline uniquely), since in this representation all involved
operators have simple, precomputable forms. Therefore we
define the stiffness matrix S as the circulant matrix having
%(27 —1,0,...,0,—1) € R as its first row and the mass ma-
trix M as the circulant matrix having %(4,1,0,...,07 1) €
RY as its first row. Then, determining the second deriva-
tives ¢/ = (q{,-..,q) at the points can be done via solv-

o Yy u \
s

7

\

Figure 13: A snapshot from the animation which we approx-
imated using CCBCs through few data points (left: input mo-
tion, right: approximated motion).
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ing the system of linear equations Mg’ = —Sg. This sys-
tem assumes that the #; are equidistant with step size A, i.e.
ti—ti_1 = hfori=2,...,N, and that the curve is closed, i.e.
we want periodic boundary conditions (other boundary con-
ditions can be realized by changing the first and last rows of
the matrices M and §). The matrix A = h%M ~1$ will also be
circulant and its entries can be precomputed up to arbitrary
precision. Now the cubic spline for 7 € [t;,7;41) is given by

s(t) =q;s1(t) +qjr152(2)+

2
P @610 = 510) + 1 (30— 20))

tiy1—1t t—1;
where 51 (1) = LT and s2(t) = Tj

So for t € [tj,tj;1) the third derivative of the resulting cu-
bic spline is s/ (1) = } (—qy + q;-/JA) and as the condition
for the left and right derivatives at 1 = t; to agree we get
Zq}/ - qy_l - ‘17+1 = 0. Thus, letting C = SMLS, we get
the desired linear operator, which has the property that g; is
an inner point iff (C p); = 0.

CCBCs. In order to define the operator C which char-
acterizes inner points for CCBCs, we are going to rep-
resent CCBCs by their coefficients in the Bernstein basis
(Bz)k:()w_3, since this again leads to simple forms of the
involved operators. It is Bi (r) = (i)tk(l — )37 and in case
of equidistant sampling with step size 4, the CCBC takes the
piecewise defined form s(r) = s;(¢) = 213(:0 béBZ (%) for
t € [tj,tj41). The coefficients are directly given via the set of
points and the prescribed first derivatives (we again assume
equidistant step sizes h):

. . h ’ . h ’ .
bl=gqj, b] =4j+34> by =qjs1— 39i+1 bl =gqj+1
and the second and third derivatives of s;(¢) for r = ¢; and
1 =tjy are given by

6
n?

’ 1 6 . . . .

) = 701) = (04~ 304 +38] 1))

$j(t) = 13 (by = 2by +bp), 5 (1) = 33 (b3 = 263 +b7)

An inner point ¢; has to satisfy the conditions s (t;) =
s.’]/_](tj) and s;”(tj) = s}”_](tj). From this, for n = 1, we

define C as the 2N X 2N matrix

L L [ R -4
4 0 2 h 0 0 —4 —h
-1 =4 0 % 1 4o 0
-2 —h 4 0 -2 h 0 0

4 h
0 0 -1 -4 -4 o0 1 -k
0o - e 0 =1 —h 2 0 -1 h

h h 4h

-0 00 0 -1 =h o E
-2 0 - 0 0 0 -2 —h 4 0

This matrix contains two rows for each point, which ex-
presses the condition that the second and third derivatives
are continuous at this point. With this, ¢; is an inner point
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iff (C(¢,4'))2j—2 = 0 and (C(q,q"))2j—1 = 0, where (g,¢")
is the vector (¢1,41,42,¢5, -, qn,qy) (or, if d > 1, a matrix
where each column is a vector).
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