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Abstract
Discrete Laplace–Beltrami operators on polyhedral surfaces play an important role for various applications in
geometry processing and related areas like physical simulation or computer graphics. While discretizations of the
weak Laplace–Beltrami operator are well-studied, less is known about the strong form. We present a principle for
constructing strongly consistent discrete Laplace–Beltrami operators based on the cotan weights. The consistency
order we obtain, improves previous results reported for the mesh Laplacian. Furthermore, we prove consistency
of the discrete Willmore energies corresponding to the discrete Laplace–Beltrami operators.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems
G.1.8 [Numerical Analysis]: Partial Differential Equations—Finite element methods

1. Introduction

Discrete Laplace–Beltrami operators on polyhedral surfaces
are a key ingredient to various applications in geometry pro-
cessing, including parametrization, modeling, editing, fair-
ing, shape analysis, interpolation, segmentation, remesh-
ing, compression, and matching [DGSW08,LZ09,RBG∗09,
SB09, BKP∗10]. An important aspect of the construction of
discrete differential operators is consistency: does the dis-
crete operator converge to the corresponding continuous op-
erator under suitable refinement? We distinguish between
strong and weak consistency, depending on whether the
strong form (∆ : C2 7→C0) or the weak form (∆ : H1

0 7→H−1)
of the Laplace–Beltrami operator is approximated.

Whereas the (strong) Laplace–Beltrami operator is de-
fined for Riemannian C2-manifolds, its weak form requires
less regularity of the manifold. A rigorous definition of
the weak Laplace–Beltrami operator on polyhedral sur-
faces is detailed in [War06]. Discretizing this operator with
piecewise-linear finite elements on a polyhedral surface
leads to the popular cotan weights [PP93]. Convergence of
solutions of the discrete Dirichlet problem was shown by
Dziuk [Dzi88] for the case of inscribed polyhedral surfaces
and by Hildebrandt et al. [HPW06] in a more general set-
ting. Furthermore, in [HPW06] it was analyzed under what
conditions the weak Laplace–Beltrami operators of polyhe-
dral surfaces converge to their counterparts on smooth sur-

faces. For many applications, a discretization of the strong
Laplace–Beltrami operator is needed, e.g. for approximation
of the mean curvature vector. Based on the cotan weights,
various constructions of discrete Laplacians have been pro-
posed, see [WBH∗07, LZ09, RBG∗09, BKP∗10] and refer-
ences therein. The cotan Laplacians satisfy structural proper-
ties that mimic properties of the continuous operator and are
useful for applications, see [DMSB99, WMKG07]. Strong
consistency of these operators could only be established for
special types of meshes [Xu04] and counter-examples to
strong consistency have been reported [Xu04, HPW06].

Recently, Belkin et al. [BSW08] have introduced a
strongly consistent discretization of the Laplace–Beltrami
operator, called the mesh Laplacian. The construction is
based on a discretization of the heat kernel and is re-
lated to graph Laplacians used in data analysis and mas-
chine learning [HAvL05, BN08]. The consistency results
have been generalized by Belkin et al. [BSW09] to point
clouds in Rd and by Dey et al. [DRW10] to convergence of
Laplace spectra. The heat kernel signature proposed by Sun
et al. [SOG09] is a prominent example of an application of
the mesh Laplacian in geometry processing.

The Willmore energy [Wil93] is an nonlinear geomet-
ric functional that is used in geometry processing for fair-
ing [HP07, WBH∗07] and hole filling [CDD∗04, BS05]. It
is closely related to the bending energy of elastic thin plates

c© 2011 The Author(s)
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



K. Hildebrandt & K. Polthier / On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces

[WBG∗08] and the Canham-Helfrich model of thin bilipid
membranes [BNSP10]. The Willmore energy of a smooth
surface is linked to the Laplace–Beltrami operator, since it
equals the L2-norm of the Laplacian of the embedding of the
surface. To the best of our knowledge, no consistent discrete
Willmore energy for polyhedral surfaces (that does not use
additional information like quadratically converging surface
normals) has been proposed so far.

Contributions. We present a principle for constructing
strongly consistent discrete Laplace–Beltrami operators
based on the cotan weights. The core of our approach is to
test the weak Laplace–Beltrami operator with certain func-
tions that we call r-local functions. Among other properties,
an r-local function at a point v has unit L1-norm and its sup-
port is contained in the geodesic ball of radius r around v.
For closely inscribed polyhedral surfaces and interpolating
piecewise linear functions, we obtain error estimates in the
L∞-norm that depend on r and the mesh size h; for con-
vergence one has to choose r asymptotically larger than h.
Whereas the evaluation of the cotan Laplacians at a vertex
requires only the 1-ring, our discrete Laplacians need a re-
gion with radius r. In this respect, our construction shares
similarities with the mesh Laplacian. However, the consis-
tency order we obtain improves the rates reported for the
mesh Laplacian. As a direct consequence of the strong con-
sistency of the discrete Laplace–Beltrami operators, we ob-
tain estimates for the pointwise approximation of the mean
curvature vector field of a surface. We show consistency of
the corresponding discrete Willmore energies, i.e. we prove
error estimates for the approximation of the Willmore en-
ergy of smooth surfaces by such discrete Willmore energies
of polyhedral surfaces.

2. Laplace–Beltrami Operator on Polyhedral Surfaces

In this section, we review previous results on the approxi-
mation of the Laplace–Beltrami operator and introduce our
notation. We consider polyhedral surfaces that approximate
a smooth surface in R3, where by a polyhedral surface we
mean a finite set of planar triangles in R3 that are glued to-
gether in pairs along the edges such that the resulting shape
is a two-dimensional manifold. Both surfaces are assumed
to be compact, connected, and oriented. We denote smooth
surfaces by M and polyhedral surfaces by Mh, and if we refer
to both types of surfaces, we denote the surface byM.

Projection map. To construct a map between M and a neigh-
boring polyhedral surface Mh, we use the orthogonal projec-
tion onto the smooth surface. This map is commonly used,
see [Dzi88], [MT04], and [HPW06]. The distance func-
tion δM : R3 7→ R+

0 is defined as

δM(y) = inf
x∈M
‖x− y‖R3 . (1)

Since M is compact, for every y ∈ R3 there is at least
one point x ∈ M that attains the minimum distance to y,

i.e. δM(y) = ‖x− y‖R3 . Then the straight line passing
through x and y meets M orthogonally; thus, x is called an or-
thogonal projection of y onto M. In general, x is not unique
by this property. However, there exists an open neighbor-
hood UM of M in R3 such that every point of UM has a
unique orthogonal projection onto M. The induced projec-
tion map Π : UM 7→M is smooth, a proof of this is contained
in a note by Foote [Foo84]. We say that a polyhedral surface
Mh is inscribed to a smooth surface M if all vertices of Mh
are on the surface M and that Mh is closely inscribed to M if
Π|Mh

, the restriction of Π to Mh, is a bijection. Under these
assumptions, the map Π|Mh

is bi-Lipschitz, see [War06]. In
the following, we assume that Mh is closely inscribed to M,
and, for simplicity, we denote the map Π|Mh

by π.

Figure 1: An illustration of the map between the smooth sur-
face and the polyhedral surface is shown.

Metric distortion. The standard scalar product of R3 in-
duces a metric g on M and a metric gh on Mh. The metric
g is Riemannian and gh is flat in the interior of all triangles
and edges and has conical singularities at the vertices. To
compare the two metrics, we pullback gh to M, i.e. we con-
sider the metric

ĝh(X ,Y ) = gh(dπX ,dπY )

on M. The metric distortion tensor A measures the distortion
between g and ĝh. It is uniquely defined (almost everywhere
on M) as the g-symmetric tensor field A, that satisfies

ĝh(X ,Y ) = g(AX ,Y )

for all smooth vector fields X ,Y on M. In [HPW06], a closed
form representation of A in terms of the curvature of M, the
distance of corresponding points on M and Mh, and the de-
viation of the surface normals at corresponding points on M
and Mh was derived and used to prove that if a sequence
of polyhedral surfaces converges to a smooth surface in the
Hausdorff distance, then the metrics of the polyhedral sur-
faces converge to the metric of the smooth surface if and
only if the surface normals converge.

Bounds on the approximation error for various metric
properties of M from corresponding properties of Mh can be
derived from estimates on the metric distortion. The follow-
ing lemma states three such estimates that were presented
in [HPW06, War06]. We start with some notation. For a tri-
angle Th of a polyhedral surface Mh, let rcirc(Th) denote the
circumradius of Th and let rin(Th) denote the inner radius
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of Th. We define the mesh size h and the shape regularity ρ

of Mh as

h = max
Th∈Mh

rcirc(Th) and ρ = max
Th∈Mh

rcirc(Th)

rin(Th)
.

Furthermore, for any g-symmetric tensor field A, we denote
by ‖A‖∞ the essential supremum over all x ∈ M of the ab-
solute values of the eigenvalues of A at x.

Lemma 1 Let M be a smooth surface in R3. Then there ex-
ists a h0 ∈ R+ such that for every polyhedral surface Mh
that is closely inscribed to M and has mesh size h < h0, the
estimates

‖A− Id‖∞ ≤C h2, (2)∥∥∥√detA−1
∥∥∥

L∞
≤C h2, and (3)∥∥∥√detAA−1− Id

∥∥∥
∞
≤C h2 (4)

hold, where the constant C depends only on M, h0, and the
shape regularity ρ of Mh.

The estimates bound the distortion of the metric, the vol-
ume form, and, as we will see below, the weak Laplace–
Beltrami operators in the operator norm.

Laplace–Beltrami operator. We denote by Lp(M),
W 1,p(M), and W 1,p

0 (M) the Lebesgue and Sobolev spaces
on a smooth or polyhedral surfaceM and by ‖ ‖Lp ,‖ ‖W 1,p ,
and | |W 1,p the corresponding norms and semi-norms. If p =

2, we write H1(M) = W 1,2(M) and H1
0 (M) = W 1,2

0 (M).
On a smooth surface M, we additionally consider the spaces
Ck(M) of k-times continuously differentiable functions and
their norms and semi-norms ‖ ‖Ck and | |Ck , which agree
with ‖ ‖W k,∞ and | |W k,∞ . For a background on Sobolev
spaces on polyhedral surfaces, we refer to [War06]. For sim-
plicity, we denote both the weak and the strong Laplace–
Beltrami operator by ∆ and rely on the context to make
the distinction. The weak Laplace–Beltrami operator on a
smooth or polyhedral surface M is the continuous linear
operator that maps any u ∈ H1

0 (M) to the distribution ∆u,
which lies in H−1(M), the dual space of H1

0 (M), and is
given by

〈∆u|ϕ〉=−
∫
M

g(∇u,∇ϕ)dvol (5)

for all ϕ ∈ H1
0 (M). Here 〈·|·〉 denotes the pairing of

H−1(M) and H1
0 (M). The weak Laplacian is a general-

ization of the (strong or classic) Laplace–Beltrami operator
in the sense that for any twice continuously differentiable u
on a smooth surface M, the (strong) Laplace–Beltrami oper-
ator ∆u of u is the unique continuous function that satisfies∫

M
∆uϕdvol =−

∫
M

g(∇u,∇ϕ)dvol

for all ϕ ∈ H1
0 (M). Using the projection π, we can pullback

any function u defined on M to the function u◦π defined on

Mh, and for any function v on Mh, we denote by v̂ the func-
tion on M that satisfies v̂ ◦ π = v. It was shown in [War06]
that the pullback of functions induces an isomorphism of the
Sobolev spaces H1(M) and H1(Mh). Therefore, to compare
∆ and ∆h, we can pullback ∆h to M by setting〈

∆̂hu|ϕ
〉
= 〈∆hu◦π|ϕ◦π〉

for any ϕ ∈ H1
0 (M). The operator ∆̂h is explicitly given by〈

∆̂hu|ϕ
〉
=−

∫
M

g(A−1∇u,∇ϕ)
√

det Advol,

and the distance of ∆ and ∆̂h in the norm of the space of con-
tinuous linear operators from H1

0 (M) to H−1(M) is bounded
above by∥∥∆− ∆̂h

∥∥
Op = sup

u,ϕ

∣∣〈(∆− ∆̂h
)

u|ϕ
〉∣∣≤ ∥∥∥√detAA−1− Id

∥∥∥
∞

,

where the supremum is taken over all u,ϕ ∈ H1
0 (M) with

|u|H1 = |ϕ|H1 = 1. Then Lemma 1 implies that
∥∥∆− ∆̂h

∥∥
Op

is O(h2). Proofs can be found in [HPW06, War06].

Piecewise linear functions. Let Sh denote the finite di-
mensional subspace of H1(Mh) consisting of all continuous
functions on Mh that are linear in each triangle of Mh, and
let Ŝh be the space that contains any function v̂∈H1(M) that
is a pullback of a function v in Sh. For any continuous func-
tion u on M, there are unique functions uh ∈ Sh and ûh ∈ Ŝh
that interpolate u at the vertices of Mh. The following lemma
provides an estimate for the interpolation error that we will
use in the next section.

Lemma 2 Let u ∈C2(M) and let ûh ∈ Ŝh be the interpolant
of u. Then

‖∇(u− ûh)‖L∞ ≤C h(|u|C2 +h |u|C1), (6)

where the constant C depends only on M and the shape reg-
ularity of Mh.

Proof Consider a triangle Th of Mh and let T ⊂ M be the
projection of Th onto M. Then u◦π |Th

is in C2(Th) and uh |Th

is the linear function that interpolates u at the vertices of Th.
Since Th is a flat triangle, we can use standard estimates for
the approximation error

‖∇h(u◦π−uh)‖L∞(Th)
≤C h |u◦π|C2(Th)

.

Furthermore,

‖∇(u− ûh)‖L∞(T )

≤ ‖A‖−
1
2∞

∥∥∥∥√g(A−1∇(u− ûh),∇(u− ûh))

∥∥∥∥
L∞(T )

= ‖A‖−
1
2∞ ‖∇h(u◦π−uh)‖L∞(Th)

and it can be shown, see [Dzi88, Lemma 3] and [War06,
Lemma 3.3.1], that

|u◦π|C2(Th)
≤C(|u|C2(T )+h |u|C1(T )).

Since the estimates hold for all triangles of Mh, we have ver-
ified (6).
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3. Pointwise Approximation

The core of our approach to obtain pointwise approximation
estimates is to test the weak Laplace–Beltrami operator with
functions whose support gets more and more localized while
their L1-norm remains constant and the growth of the W 1,1-
norm is bounded. We define:

Definition 3 LetM be a smooth or a polyhedral surface in
R3, and let CD be a positive constant. For any x ∈M and
r ∈ R+, we call a function ϕ :M 7→ R r-local at x (with
respect to CD) if the criteria

(D1) ϕ ∈ H1
0 (M),

(D2) ϕ(y)≥ 0 for all y ∈M,

(D3) ϕ(y) = 0 for all y ∈M with dM(x,y)≥ r,

(D4) ‖ϕ‖L1 = 1, and

(D5) |ϕ|W 1,1 ≤ CD
r

are satisfied.

Functions satisfying properties (D2), (D3), and (D4) can
be used to approximate the function value at x of any con-
tinuous function f through the integral

∫
M f ϕ dvol. In this

sense, r-local functions are approximations of the delta dis-
tribution.

Lemma 4 Let ϕ ∈ L1(M) satisfy properties (D2), (D3), and
(D4) of Definition 3 for some x ∈ M and r ∈ R+, and let
f ∈C1(M). Then, the estimate∣∣∣∣ f (x)−∫

M
f ϕ dvol

∣∣∣∣≤ ‖∇ f‖L∞ r (7)

holds.

Proof Since ϕ is non-negative and has a unit L1-norm, we
have ∣∣∣∣ f (x)−∫

M
f ϕ dvol

∣∣∣∣= ∣∣∣∣∫M
( f (x)− f )ϕ dvol

∣∣∣∣
≤ sup

y∈Br(x)
| f (x)− f (y)| .

For any y in the geodesic ball Br(x) around x, let γ be a (unit-
speed parametrized) minimizing geodesic that connects x
and y. Then

| f (x)− f (y)|=
∣∣∣∣∫

γ

g(∇ f (γ(t)), γ̇(t))dt
∣∣∣∣

≤ ‖∇ f‖L∞ length(γ)≤ ‖∇ f‖L∞ r.

This implies supy∈Br(x) | f (x)− f (y)| ≤ ‖∇ f‖L∞ r, which
concludes the proof.

Certain r-local functions even exhibit a higher approxi-
mation order. There are r-local functions ϕ that satisfy∣∣∣∣ f (x)−∫

M
f ϕ dvol

∣∣∣∣≤C | f |C2 r2 (8)

for all f ∈C2(M), where C depends only on M. We give an
example of such a function in the appendix.

Theorem 5 Let M be a smooth surface in R3 and let u be
a smooth function on M. Then there exists a h0 ∈ R+ such
that for every pair consisting of a polyhedral surface Mh that
is closely inscribed to M and satisfies h < h0 and a function
ϕ that is r-local at a point y ∈Mh, the estimate

|∆u(x)−〈∆huh|ϕ〉| ≤C(r+
h
r
) (9)

holds, where uh ∈ Sh(Mh) is the interpolant of u and x =
π(y). If ϕ̂ satisfies (8), then we have

|∆u(x)−〈∆huh|ϕ〉| ≤C(r2 +
h
r
). (10)

The constants C depend only on M, u, h0, the shape regular-
ity ρ of Mh, and the constant CD of ϕ.

Proof The operator ∆h and the functions uh and ϕ are de-
fined on Mh. First, we pullback ∆h,uh, and ϕ to M, add some
zeros, and use the Cauchy-Schwarz inequality to get

|∆u(x)−〈∆huh|ϕ〉|=
∣∣∆u(x)−

〈
∆̂hûh|ϕ̂

〉∣∣ (11)

≤ |∆u(x)−〈∆u|ϕ̂〉|+ |〈∆(u− ûh)|ϕ̂〉|+
∣∣〈(∆− ∆̂h)ûh|ϕ̂

〉∣∣ .
In the following, we derive bounds for each of the three sum-
mands of the right-hand side of (11). We start with the first
summand. Since the support of the function ϕ is contained
in the geodesic ball Br(y), the support of ϕ̂ is contained in
the B‖A‖∞r(x). It follows from Lemma 1 that there is a con-
stant C, which depends only on M and h0, such that ϕ̂ sat-
isfies property (D3) for the point x and the radius Cr. Thus,
ϕ̂/‖ϕ̂‖L1 satisfies the requirements of Lemma 4 and we get

|∆u(x)−〈∆u|ϕ̂〉|

≤
∣∣∣∣∆u(x)− 1

‖ϕ̂‖L1
〈∆u|ϕ̂〉

∣∣∣∣+ ∣∣∣∣(1−‖ϕ̂‖L1

) 1
‖ϕ̂‖L1

〈∆u|ϕ̂〉
∣∣∣∣

≤C(r+h2).

Here, we use Lemma 4 and the estimate∣∣‖ϕ̂‖L1 −1
∣∣≤C h2,

which follows from Lemma 1, in the last step. If ϕ̂ satisfies
(8), then using (8) instead of Lemma 4 yields

|∆u(x)−〈∆u|ϕ̂〉| ≤C(r2 +h2).

To establish a bound on the second summand we show that
the bound ‖∇hϕ‖L1(Mh)

≤C 1
r holds for ‖∇ϕ̂‖L1 as well

‖∇ϕ̂‖L1 =
∫

M
‖∇ϕ̂‖g dvol

≤
∥∥∥detAA−1

∥∥∥− 1
2

∞

∫
M

√
g(A−1∇ϕ̂,∇ϕ̂)

√
detA dvol

=
∥∥∥detAA−1

∥∥∥− 1
2

∞
‖∇hϕ‖L1(Mh)

≤C
1
r
.
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Then, we apply Hölder’s inequality and Lemma 2 to get

|〈∆(u− ûh)|ϕ̂〉|=
∣∣∣∣∫M

g(∇(u− ûh),∇ϕ̂) dvol
∣∣∣∣

≤ ‖∇(u− ûh)‖L∞ ‖∇ϕ̂‖L1 ≤C
h
r
.

A bound on the third summand follows from estimate (4) of
Lemma 1 and Lemma 2∣∣〈(∆− ∆̂h)ûh|ϕ̂

〉∣∣
=

∫
M

g((Id−
√

detA A−1)∇ûh,∇ϕ̂) dvol

≤
∥∥∥Id−

√
detA A−1

∥∥∥
∞
‖∇ûh‖L∞ ‖∇ϕ̂‖L1

≤C
h2

r
.

This bound is quadratic in h and therefore small compared to
the bound on the second summand. The combination of the
bounds on the three summands completes the proof.

The theorem is stated in a general setting that assumes no
correlation of r and h. The following corollary shows how to
choose r to get the optimal approximation order in h.

Corollary 6 Under the assumptions of Theorem 5, if r =
√

h,
then

|∆u(x)−〈∆huh|ϕ〉| ≤C
√

h,

and if ϕ̂ satisfies (8) and r = h
1
3 , then

|∆u(x)−〈∆huh|ϕ〉| ≤C h
2
3 .

4. Discrete Laplace–Beltrami Operators

Based on the approximation results of the last section, we
construct discrete Laplace–Beltrami operators and prove
strong consistency. Then, we discuss matrix representations
of the operators and compare the consistency rates of our
approach and the mesh Laplacian.

Let n be the number of vertices of Mh and let
{v1,v2, ...,vn} denote the set of vertices. Any function uh ∈
Sh(Mh) is uniquely determined by its function values at
the vertices. The vector (uh(v1),uh(v2), ...,uh(vn)) is called
the nodal vector, and we shall describe discrete Laplace–
Beltrami operators by their action on nodal vectors. Let
{ϕi}i∈{1,2,..n} be a set of functions such that every ϕi is
r-local at the vertex vi ∈ Mh. Then, we define the discrete
Laplace–Beltrami operator ∆

{ϕi}
h associated to {ϕi} as

∆
{ϕi}
h : Sh 7→ Sh

uh(v1)
uh(v2)
...

uh(vn)

 7→

〈∆huh|ϕ1〉
〈∆huh|ϕ2〉

...
〈∆huh|ϕn〉

 .

For each ϕi there is a constant CD,i such that (D5) of Defini-
tion 3 is satisfied. In the following, we refer to the maximum
of the CD,i as the constant CD of {ϕi}.

Theorem 7 Let M be a smooth surface in R3, and let u be
a smooth function on M. Then there exists a h0 ∈ R+ such
that for every pair consisting of a polyhedral surface Mh that
is closely inscribed to M and satisfies h < h0 and a set of
functions {ϕi}i∈{1,2,..n} such that every ϕi is r-local at the
vertex vi ∈Mh with r =

√
h, the estimate

sup
y∈Mh

∣∣∣∆u(π(y))−∆
{ϕi}
h uh(y)

∣∣∣≤C
√

h (12)

holds, where uh ∈ Sh(Mh) is the interpolant of u. If every ϕ̂i

satisfies (8) and r = h
1
3 , then we have

sup
y∈Mh

∣∣∣∆u(π(y))−∆
{ϕi}
h uh(y)

∣∣∣≤C h
2
3 . (13)

The constants C depend only on M, u, h0, the shape regular-
ity ρ of Mh, and the constant CD of {ϕi}.

Proof Let v ∈ Sh and v̂ ∈ Ŝh be the interpolants on Mh and
M of the function ∆u. Then the approximation error satisfies
(analogous to Lemma 2)

‖∆u− v̂‖L∞ ≤C h2(|∆u|C2 +h |∆u|C1). (14)

Theorem 5 implies

|∆u(π(vi))−〈∆huh|ϕi〉| ≤C
√

h (15)

for all i. Since v(vi) = v̂(vi) = ∆u(π(vi)), we have∥∥∥v−∆
{ϕi}
h uh

∥∥∥
L∞
≤C
√

h. (16)

Combining (14) and (16) shows (12). The proof of the sec-
ond estimate proceeds analogously.

Matrix representation. We show how the cotan matrix can
be used to construct the matrix representation L of ∆

{ϕi}
h

with respect to the nodal basis. For simplicity, we assume
that the ϕi are functions in Sh. Let S denote the cotan matrix,
see [PP93], and let Φ be the matrix with entries Φi j =ϕi(v j).
Then L is the sparse matrix given by

L =−ΦS. (17)

The number of entries of L depends on the number of ver-
tices that are in the support of the functions ϕi. When com-
paring (17) to the construction of cotan Laplacians (as de-
scribed in [WBG∗08]), we see that Φ takes the role of the
inverse mass matrix.

In general, the matrix Φ is not symmetric. But, Φ that are
symmetric can be constructed. The matrix can be decom-
posed into a symmetric and an antisymmetric part

Φ = Φ
sym +Φ

asym =
1
2
(Φ+Φ

T )+
1
2
(Φ−Φ

T ),

where Φ
T denotes the transpose of Φ. For certain choices of

r-local functions {ϕi}, the entries of Φ
asym are small com-

pared to the entries of Φ
sym. For example, if we use the

c© 2011 The Author(s)
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geodesic or extrinsic hat functions (see appendix) with the
same value of r at all vertices. Then, it is justified to use

L =−Φ
sym S,

instead of (17).

Comparison with the mesh Laplacian. Bounds on the con-
sistency error of the mesh Laplacian depend on the mesh
size h, the maximum angle η (between normals of the
smooth and the polyhedral surface), and a parameter t, which
controls the width of the heat kernels. The parameter t is
the analog of the parameter r in our approach. Under the
assumption that the shape regularity of the polyhedral sur-
face is bounded, η =O(h), which is optimal. Then, the con-
sistency order depends on h and t. In [BSW09], the bound
O( h

t2 + t
1
2 ) on the consistency error of the mesh Laplacian

is derived. The optimal choice t = h
2
5 yields a consistency

order of h
1
5 .

5. Willmore energy

The Willmore energy of a smooth surface M in R3 is

W (M) =
∫

M
H2dvol, (18)

where H denotes the mean curvature of M. The mean curva-
ture is connected to the Laplace–Beltrami operator by

H = HN = ∆I, (19)

where I is the embedding of M in R3 and N is the surface
normal field. Then, the Willmore energy of M equals the
L2-norm of the ∆I. Let Ih : Mh 7→ R3 denote the embed-
ding of the polyhedral surface Mh. Each of the three coor-
dinates of Ih is a function in Sh. Thus, we can define the dis-
crete mean curvature vector associated to a discrete Lapla-
cian ∆

{ϕi}
h analogous to (19) by

H{ϕi}
h = ∆

{ϕi}
h Ih.

If Mh is closely inscribed to M, Theorem 7 implies

sup
y∈Mh

‖H(π(y))−H{ϕi}
h (y)‖R3 ≤C

√
h (resp. C h

2
3 ).

We define the discrete Willmore energy of Mh and {ϕi} anal-
ogous to (18) as

W{ϕi}
h (Mh) = ‖H

{ϕi}
h ‖2

L2(Mh).

The following theorem shows consistency of the discrete
Willmore energies.

Theorem 8 Let M be a smooth surface in R3. Then there
exists a h0 ∈ R+ such that for every pair consisting of a
polyhedral surface Mh that is closely inscribed to M and sat-
isfies h < h0 and a set of functions {ϕi}i∈{1,2,..n} such that
every ϕi is r-local at the vertex vi ∈ Mh with r =

√
h, the

estimate ∣∣∣W (M)−W{ϕi}
h (Mh)

∣∣∣≤C
√

h

h ‖H(x)−H
ϕ 3√h
h ‖ eoc ‖H(x)−H

ϕ√
h

h ‖ eoc
0.9907594 0.1473438 − 0.1655998 −
0.4072441 0.0718663 0.81 0.0816863 0.79
0.1376594 0.0343882 0.68 0.0439559 0.57
0.0407502 0.0151471 0.67 0.0238574 0.50
0.0111478 0.0063759 0.67 0.0126259 0.49
0.0042305 0.0033417 0.67 0.0078440 0.49
0.0015209 0.0016897 0.67 0.0047346 0.49

h ‖H(x)−H
ϕ 3√h
h ‖ eoc ‖H(x)−Hϕh

h ‖ eoc
0.1819730 0.1159240 − 0.0681956 −
0.0615573 0.0469350 0.83 0.6798970 −2.10
0.0182239 0.0206826 0.67 0.0328904 2.50
0.0049855 0.0087871 0.66 0.5920200 −2.20
0.0018919 0.0045958 0.67 0.1372740 1.50
0.0006802 0.0023197 0.67 0.0918593 0.39
0.0002655 0.0012393 0.67 0.1451020 −0.49

Table 1: Approximation errors and the experimental orders
of convergence for the approximation of the mean curvature
vector at a point of a smooth surface are shown.

holds. If every ϕ̂i satisfies (8) and r = h
1
3 , then we have∣∣∣W (M)−W{ϕi}

h (Mh)
∣∣∣≤C h

2
3 .

The constants C depend only on M, h0, the shape regularity
ρ of Mh, and the constant CD of {ϕi}.

Proof To compare H and H{ϕi}
h , we consider the vector field

Ĥ{ϕi}
h ∈ Ŝ3

h given by Ĥ{ϕi}
h ◦ π = H{ϕi}

h . We split the ap-
proximation error in two terms, the first term measures the
difference of H and Ĥ{ϕi}

h and the second term measures the
difference of the L2-norms of M and Mh:∣∣∣W (M)−W{ϕi}

h (Mh)
∣∣∣= ∣∣∣‖H‖2

L2(M)−‖H
{ϕi}
h ‖2

L2(Mh)

∣∣∣
≤
∣∣∣‖H‖2

L2(M)−‖Ĥ
{ϕi}
h ‖2

L2(M)

∣∣∣+ ∣∣∣|1−√det A|‖Ĥ{ϕi}
h ‖2

L2(M)

∣∣∣
≤ ‖H− Ĥ{ϕi}

h ‖L∞(M)‖H+ Ĥ{ϕi}
h ‖L1(M)+C h2‖Ĥ{ϕi}

h ‖2
L2(M).

Here, we use Hölder’s inequality and Lemma 1 in the last
step. By Theorem 7, the term

‖H− Ĥ{ϕi}
h ‖L∞(M) = sup

y∈Mh

‖∆I(π(y))−∆
{ϕi}
h Ih(y)‖

is bounded by C
√

h, resp. C h
2
3 . Furthermore, Theorem 7

guarantees that there are upper bounds for ‖H+Ĥ{ϕi}
h ‖L1(M)

and ‖Ĥ{ϕi}
h ‖2

L2(M).

6. Experiments

In this section, we show results of experiments concern-
ing the consistency error and the consistency order. For a
parametrized surface M, we consider inscribed polyhedral
surfaces with decreasing mesh size h and approximate the
mean curvature vector of M at a point x ∈ M by Hϕr

h =
〈∆hIh|ϕr〉, where ϕr ∈ Sh is an r-local function on Mh. The

c© 2011 The Author(s)
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tables show the approximation error and the experimental
order of convergence. Let ehi and ehi+1 be the approximation
errors of some quantity for the decreasing mesh sizes hi and
hi+1. Then the experimental order of convergence (eoc) of
the quantity is defined as

eoc(hi,hi+1) = log
ehi

ehi+1

(
log

hi

hi+1

)−1

.

In the first example, we consider a torus of revolution.
The upper part of Table 1 shows the approximation error∥∥H(x)−Hϕr

h

∥∥
R3 obtained with two different types of r-local

functions and confirms both estimates of Theorem 5. The
first function is (a piecewise linear approximation of) the ex-
trinsic hat function (see appendix). It is given by

ϕr =
ϕ̃r

‖ϕ̃r‖L1
, (20)

where ϕ̃r is the function in Sh that at any vertex v∈Mh takes
the value

ϕ̃r(v) = max{1−
‖x− v‖R3

r
,0}. (21)

We set r = h
1
3 and due to the approximate symmetry of ϕr

around x, we obtain an eoc of h
2
3 . The second function sets

r = h
1
2 , and we disturb the symmetry around x by translating

the center of the extrinsic hat function (away from x) by a
random vector of length

√
h/20. The resulting function does

not satisfy (8), and we get the expected eoc of h
1
2 . We would

like to remark that in this experiment (and in many other
similar settings) we got an eoc of h if we set r = h

1
2 and

and do not translate the center of the function. This suggests
the question whether it is possible the improve the consis-
tency order of h

2
3 for functions that satisfy (8). In the second

example, we consider polyhedral surfaces that approximate
the sphere, but the vertex positions are corrupted with ran-
dom noise of order h2. The lower part of Table 1 shows that
for r = h

1
3 we still obtain the same eoc, whereas for r = h

there is no convergence. In the third example, we approx-
imate the Willmore energy of a torus of revolution by the
discrete Willmore energy that we obtain by using functions

h W{ϕi}
h (Mh)

∣∣∣W (M)−W{ϕi}
h (Mh)

∣∣∣ eoc

0.6181260 19.8617 2.931210 −
0.3542860 20.9932 1.799680 0.88
0.1909680 21.7347 1.058190 0.86
0.0973871 22.1986 0.594268 0.86
0.0491797 22.4605 0.332392 0.85
0.0247127 22.6066 0.186275 0.84
0.0123872 22.6876 0.105310 0.83
0.0062014 22.7327 0.060178 0.81

Table 2: Results for approximation of the Willmore energy
of a torus of revolution by a discrete Willmore energy.

of type (20) at each vertex of the polyhedral surface. Table 2
shows the consistency error and the eoc.

7. Conclusion

We have shown that using the weak form of the Laplace–
Beltrami operator, one can construct discrete Laplace–
Beltrami operators that are strongly consistent. The approx-
imation results are formulated for closely inscribed meshes
and therefore depend on the mesh size and the shape regu-
larity. However, the results could be transferred to the more
general setting used in [HPW06] that does not restrict ver-
tices to lay on the surface. We think that the presented
technique could be helpful for the construction of discrete
schemes, based on piecewise linear finite elements, for solv-
ing 4th order problems. As a step in this direction, we have
proposed a consistent discretization of the Willmore energy.
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Appendix

In this appendix, we discuss a way to construct r-local func-
tions. First, we consider a family of r-local functions on R2,
then we use the Riemannian exponential map to construct
a family of r-local functions on M. Let φ ∈ H1(R2) be a
non-negative function that vanishes in the complement of
the open unit ball in R2 and satisfies ‖φ‖L1(R2) = 1. For any
r ∈ R+, φr defined by

φr(·) =
1
r2 φ(

·
r
)

is an r-local function on R2 and the constant CD
equals |φ|W 1,1(R2). Since the surface M is compact, the in-
jectivity radius i(M) of M is a strictly positive number. For a
point x ∈ M and an r ∈ R+, let Br(x) be the open geodesic
ball around x in M, and let Br(0) denote the open ball of
radius r around the origin 0 in TxM. The Riemannian expo-
nential map at x,

exp : Bi(M)(0)⊂ TxM 7→M,

is a diffeomorphism of Bi(M)(0) and exp(Bi(M)(0)) =

Bi(M)(x). Let ρ ∈ R+ be strictly smaller than i(M). Then,
for any r ∈ (0,ρ), ϕr given by

ϕr = ‖φr ◦ exp−1 ‖−1
L1(M)φr ◦ exp−1

is r-local at x. On polyhedral surfaces, we are not interested
in r-local functions for arbitrarily small r, but for r ∼ h

1
2 or

r∼ h
1
3 . Furthermore, we restrict our attention to functions in

Sh. The interpolant in Sh of an r-local function ϕr on M is an
r-local function on Mh, though the values r may differ by h.

As an example of this construction of r-local functions,
let us consider the function φ(·) = 3

π
max{0,1−‖·‖R2} on

R2. We call the corresponding functions ϕr on M geodesic
hat functions, since they decay linearly with respect to the
geodesic distance to x. Explicitly, the functions are given by
ϕr = ϕ̃r/‖ϕ̃r‖L1 , where ϕ̃r(y) =max{0,1−δM(x,y)/r} and
δM(x,y) denotes the geodesic distance of x and y. Due to
their symmetry around x, the functions ϕr are examples of
functions that satisfy the estimate (8). On Mh we can con-
struct functions ϕr,h that approximate ϕr by replacing the
geodesic distance δM on M with the geodesic distance δMh

on Mh.

In our experiments, we use extrinsic hat functions in-
stead of the geodesic hat functions, i.e. we replace the
geodesic distance by the Euclidean distance in R3. For small
enough r, the extrinsic hat functions satisfy the properties
of r-local functions, except that we need to modify prop-
erty (D3): the support of the extrinsic hat functions is not
contained in Br(x) but there is a constant C depending only
on M such that the support is contained in BCr(x). Still, our
estimates hold for these functions as well.
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