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Abstract

We propose a constraint-based method for the fairing of surface meshes. The main feature of our approach is that
the resulting smoothed surface remains within a prescribed distance to the input mesh. For example, specifying
the maximum distance in the order of the measuring precision of a laser scanner allows noise to be removed while

preserving the accuracy of the scan.

The approach is modeled as an optimization problem where a fairness measure is minimized subject to constraints
that control the spatial deviation of the surface. The problem is efficiently solved by an active set Newton method.

1. Introduction

The instant availability of high-quality digital models of 3D
surfaces becomes an essential prerequisite in many research
areas, industrial modeling, e-commerce, medical treatment
planning, archeology, and restoration, just to name a few.
Acquisition technologies such as laser scans for 3D surface
models or CT, MRI and other devices for volumetric shapes
can measure data with high accuracy. Nevertheless the accu-
racy is often lost in the mesh creation pipeline. A crucial step
in this pipeline is the removal of geometric noise contained
in the positions of the measured points. Many techniques to
effectively remove the noise have been proposed, but these
may spoil the accuracy of the data.

Our new method provides the guaranty that after noise
removal the surface still lies within the accuracy of the mea-
sured data. This approach is designed for applications where
accuracy is crucial; for example, technical or medical appli-
cations as well as digitalization of cultural heritage.

Measuring fairness. Fairness energies are an attempt to es-
tablish quantitative measures for fairness of a shape. Finding
a commonly-accepted measure of fairness is a delicate task,
due to the inherent subjectivity of rating the appearance of
a geometry as well as the specific demands of applications.
Nevertheless, one can agree on some general criteria: a fair-
ness energy should be independent of the parametrization of
the surface, invariant under rigid motions and scaling, and
spheres should be among the minimizers of the energy.

Different measures of fairness have been proposed. These
can be classified by the order of the highest derivative of the
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surface needed to evaluate the energy. A measure of first or-
der is the area of the surface. Since area is not invariant under
scaling, Delingette [Del01] proposed using the isoperimetric
ratio A3 / V2 as a scale invariant first-order fairness measure
for closed surfaces. Here A denotes the area and V is the
volume enclosed by the surface. Second-order measures re-
late to curvature, such as integrals of squares of curvature
terms. Prominent examples are the bending energy [ H 2 dA,
the total curvature [ (k7 +%3)dA, and the Willmore energy
[ (k1 —x2)%dA. Here | and k; denote the principal curva-
tures and H = K| + K, the mean curvature. An example of
a third-order measure is the curvature variation energy pro-
posed by Moreton and Sequin [MS92]. The Euler Lagrange
equation of this energy is of sixth order where minimization
becomes a delicate task; especially on meshes.

Improving fairness. Evolution methods are a technique to
improve the fairness of a surface. Such evolving surfaces
monotonically decrease a fairness measure and are described
as the solution of a (usually non-linear) parabolic partial dif-
ferential equation. The L2—gradient flow of the area func-
tional evolves each point of the surface along its normal
direction with a velocity equal to the mean curvature and
is therefore called the mean curvature flow. The underlying
flow equation is of diffusion type d;X = AX, where X is a
family of immersions of the surface and A is the Laplace-
Beltrami operator of X. Smoothing algorithms based on this
equation are often referred to as Laplace smoothing.

Taubin [Tau95] applied this approach to surface smooth-
ing using a linearization of the flow equation, which keeps
the Laplace operator unchanged during the evolution. Based
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Figure 1: An original noisy scan of a Chinese lion with 1.3 m triangles and height about 10 cm (left). The smoothed mesh (right)
stays within a 0.1 mm distance from the initial mesh. The surfaces are colored by mean curvature, with color range from white

(negative curvature) to red (positive curvature).

on this linear equation, he constructed a low-pass filter for
meshes in analogy to filters used in signal processing. Des-
brun et al. [DMSB99] applied the mean curvature flow to
mesh smoothing and used the more faithful coran discretiza-
tion of the Laplace-Beltrami operator. Furthermore, they em-
ployed an implicit scheme for the time integration to over-
come the step-size restrictions of explicit schemes.

Feature preserving schemes. A side effect of Laplace
smoothing is that it quickly smoothes out geometric
features such as sharp corners. Anisotropic diffusion
schemes [CDR00, TWBOO02, BX03, HP04] preserve or even
enhance sharp corners by suppressing diffusion in direc-
tions of high curvature. Anisotropic geometric diffusion de-
rives from the Perona Malik filter [PM87] in image process-
ing. A related technique - the bilateral filter [TM98] - has
been transferred to meshes by Fleishman et al. [FDCOO03]
and Jones et al. [JDDO03]. Recently, an extension employ-
ing non-local means has been presented by Yoshizawa et
al. [YBS06]. Comparable results can be achieved by meth-
ods based on Wiener filtering [PSZ01, GP0O1, Ale02].

Second order fairness measures. While minimizers of the
area functional are determined by values at the boundary,
second order fairness measures such as bending energy or
Willmore energy allow for c! boundary conditions; i.e. po-
sitions and normals can be prescribed. This makes second-
order functionals attractive for the construction of fair spline
surfaces in geometric design [WNO1]. By specifying consis-
tent data at the boundaries of the individual patches, glob-
ally G' surfaces can be constructed. Kobbelt and Schnei-
der [SKOO] construct fair meshes with G' boundary condi-
tions as the solution of a fourth-order differential equation.

For meshes, stable discretizations of the Willmore energy
and its fourth-order gradient flow have been developed in

recent years. Yoshizawa and Belyaev [YB02] describe a di-
rect discretization of the flow equation using the cotan for-
mula to discretize terms related to mean curvature and the
angle defect for Gauss curvature. Clarenz et al. [CDD*04]
present a finite element discretization using linear Lagrange
elements. The basis of their scheme is a decomposition of
the weak formulation of the flow equation into a coupled
system of second-order equations in which the Gauss cur-
vature term, which is difficult to discretize, is removed.
Bobenko [Bob05] constructs a discrete Willmore functional
that preserves the Mobius group, the symmetry group of the
continuous energy. Bobenko and Schroder [BSO5] present an
implicit scheme to integrate the gradient flow of this energy.

The bending energy plays an essential role in the
simulation of cloth. Common edge-based discretization
schemes [BW98, BMF03, GHDS03, WBH*07] measure
mean curvature at the edges of the mesh [CSMO03, HP0O4].
Such a discrete energy is given as a sum of contributions
from stencils that consist of two triangles sharing an inte-
rior edge. The small stencil reduces the complexity of the
expressions for the energy and its gradient, which in turn ac-
celerates the evaluation and simplifies the implementation.

Constrained fairing. To assess the quality of the output
of a smoothing method, additionally to fairness, the devi-
ation of the result from the initial surface (e.g. measured
data) is an important criterion. Belyaev and Othake [BOO03]
use integrals of the squared distance and the squared devia-
tion of normals to compare the results produced by different
smoothing methods.

Least-square meshes proposed by Sorkine et al. [SCO04,
NISAO06] minimize a weighted sum of two quadratic en-
ergies, the biharmonic energy and a weighted sum of the
squared distances of each vertex to its initial position. Ex-
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Figure 2: Removing marching cubes artifacts from a human pelvis (~28 cm width) model extracted from computed tomography
data. The maximum deviation of the smoothed mesh (right) from the initial surface is 1 mm.

tending this approach Volodine et al. [VVRO6] present a
scheme to compute minimizers of the biharmonic energy un-
der the constraint that the sum of the squared distances is less
than a prescribed value. Since for larger meshes the com-
putation of the exact solution of this problem is too costly,
they describe a scheme to approximate the solution. Liu et
al. [LBH*01] propose a different type of constraint: the po-
sitions of the barycenters of all triangles are fixed. This is
very restrictive; for example, if noise is added to a planar
mesh, the vertices and the barycenters move out of the plane.
Since the barycenters keep their position during smoothing,
the plane cannot be recovered.

Gibson [Gib98] describes a technique to reduce aliasing
effects in isosurfaces extracted from binary volume data. In
the first step an approximate isosurface, which has all ver-
tices located at points of the volume grid, is extracted. Then
an energy is minimized under the constraint, so that each
vertex of the surface mesh remains within the eight vox-
els adjacent to the initial position of the vertex. Since the
energy - a spring energy with zero rest length - is of first
order, sharp bendings appear where the surface touches the
constraints. Gibson notes that smoother surfaces could be
produced using an energy that involves curvature, thus it is
of second order. Nielson et al. [NGH*03] present a related
technique using a volume grid to define constraints as well.
The scheme can process meshes, but requires the surface to
surround a volume. First, a binary field is constructed that
has value one at grid points inside the volume surrounded by
the mesh and zero outside. Next, the isosurface correspond-
ing to the value 0.5 is extracted. Each vertex of this surface is
located at the midpoint of an edge of the volume grid. Then
an energy is minimized with the constraint that each vertex
remains on the corresponding edge of the volume grid. The
energy is the sum over integrals of the squared curvature of
curves that are generated by intersection of the mesh with
planes. The sum runs over all coordinate planes that contain
grid points.
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1.1. Contributions

We present a new constrained-based denoising and fairing
algorithm which delivers high-quality fairing and a guar-
anty that all points of the smoothed surface remain within
a prescribed distance to their initial positions. Our method
is based on a novel combination of box constraints with a
discrete bending energy and an efficient optimization proce-
dure.

The scheme is modeled as a constrained non-linear op-
timization problem that is solved by an active set Newton
method with gradient projection. We present a robust and
efficient approximation scheme for the second-order infor-
mation required by the Newton method. The computational
cost of the method is comparable to that of implicit integra-
tion schemes for geometric flows.

Applications of our scheme include denoising of scan data
with the guaranty that no point of the smoothed surface de-
viates further than the accuracy of the scanning device from
its measured position, as well as removal of aliasing and ter-
racing artifacts of isosurfaces extracted from volumetric data
assuring that the surface remains within the domain consist-
ing of the voxels that contain the initial surface and their
1-neighbors. This scheme yields a new level of control over
surface smoothing that can be useful in the process of con-
verting measured data into high-accuracy models for techni-
cal or medical applications as well as for the digitization of
cultural heritage.

A property of common evolution based smoothing meth-
ods is that if they are not stopped at the right time, the model
is oversmoothed or even degenerates. In contrast, additional
iterations of the presented method can only improve the re-
sult. Furthermore, there is only one parameter to control the
method, the maximum deviation tolerance, which for noise
removal relates to the accuracy of the data. We believe that
these are important steps towards an automatization of the
smoothing process.
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Figure 3: Noise removal from a range image. The maximum tolerance is 0.1 mm and the height of the object is 30 cm. The right
image shows the smoothed surface colored by the distance of the initial (noisy) to the smoothed surface.

2. Discrete Fairness Energy

The fairness energy used in the optimization problem must
be at least of second order, otherwise the surface would
develop sharp bendings or staircasing artifacts at the con-
straints. Three examples of second-order energies, the bend-
ing energy, the Willmore energy, and the total curvature are
closely related and differ only by a multiple of the integral of
the Gauss curvature over the surface. By the Gauss-Bonnet
theorem, this integral is constant for compact closed surfaces
since it depends only on the topology of the surface. For
compact surfaces with boundary the integral of the Gauss
curvature is invariant under variations that fix positions and
normals at the boundary. Hence in both cases the three ener-
gies have the same minimizers.

Either of the three energies is a good candidate for
our purposes. An alternative second-order fairness measure
would be the integral of the squared Gauss curvature. But
by Gauss’ Theorema Egregium this energy only depends on
the metric of the surface, which rules out this energy. For ex-
ample, take a piece of paper and bend it. There is no metric
distortion; Gauss curvature does not change.

We use the discrete bending energy proposed by Wardet-
zky et al. [WBH*07], which uses the edge-based mean
curvature vector [HP0O4] and can be derived using non-

conforming Crouzeix-Raviart finite elements. The energy is
a sum of contributions from hinge stencils
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where A, is the combined area of the two triangles adjacent

to the edge e, and O, is the dihedral angle at e. The non-

linear gradient of the energy can be computed efficiently;
for an explicit formula see [WBH*07].

3. Constrained Optimization Problem

Our fairing method is modeled as a constrained non-linear
optimization problem. The constraints assure that during the
smoothing process, no point of the surface deviates more
than a prescribed distance from its initial position. The def-
inition of the constraints involves a deviation measure that
takes into account the maximum deviation rather than the
usual integral of the squared distance. We first define the
discrete maximum deviation measure, then describe the op-
timization problem.

For two meshes M and N that have the same connectivity,
we define the discrete maximum deviation measure d~c as

doo (M, N) = max; ||m; — ni||ps , 2)

(© The Eurographics Association 2007.
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Figure 4: Noise removal from the scanned blade model with 390 k triangles. Details are shown on the right.

where m; and n; are the vertices of M respectively N. The
measure doo describes a metric on the set of all meshes with
a fixed connectivity. Let Be(M) denote the closed ball with
radius € around a mesh M with respect to this metric. Ge-
ometrically speaking, a mesh N is in the set B¢(M) if each
vertex n; of N lies in the Euclidean ball of radius € around
the corresponding vertex m; of M.

Now we can state the optimization problem. Given a mesh
M and a positive €, find a mesh N that minimizes the discrete
bending energy over all meshes N € Be(M).

3.1. Discrete Deviation Measure

Consider two surfaces described by continuous functions
f,g mapping a domain A into R3; the (continuous) maxi-
mum deviation measure is then

doo(f.8) = s'éljllf(X) —&()llgs -

The objective of this section is to relate the discrete max-
imum deviation measure doo to its continuous counter-

Figure 5: The bunny model (70k triangles) is shown on
the left and after unconstrained minimization of the discrete
bending energy on the right. The zoom shows the difference
in size of the triangles corresponing to the region around an
ear. This demonstrates the robustness of the discrete energy.
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part do0. At first the maximum deviation measure is only
defined for parametrized surfaces. Since the maps f and g
are only required to be continuous, the measure doo can be
evaluated for meshes as well. Let the domain A be a mesh
embedded in R. Then every mesh M in R? with the same
connectivity as A can be parametrized by the continuous
function Iy : A — R3 mapping each vertex of a; of A to the
coordinates of the corresponding vertex m; of M and linear
interpolation in the triangles. For two such functions /j; and
Iy representing meshes M and N the continuous deviation
measure doo (Iyr,Iy) equals the supremum of the function
|lIm — IN||gs- The supremum is attained at a vertex of the
mesh, hence for meshes the continuous measure equals the
discrete measure

800 (It I) = doo (M, N).

4. Minimization Procedure

The constraints we are dealing with are spheres around all
vertices of the mesh. In order to simplify the minimization
procedure we approximate the spheres by boxes with side
length 2¢. Active set Newton solvers with gradient projec-
tion are among the most effective solvers for large-scale box
constrained non-linear optimization problems. For a general
introduction to active set and gradient projection methods we
refer to [NWO06]. For an analysis and discussion of solvers
of this type for large-scale problems see [LM99, KanO1]
and references therein. First, we briefly describe the general
scheme and describe in Section 4.1 how to approximate the
required second-order information in an efficient and robust
way.

By listing the coordinates of all vertices we identify a
mesh with a point in R" where n equals three times the
number of vertices in the mesh. Let xX° € R" be the point
representing the initial mesh. Then the feasible set €0 ; is
the n-dimensional cube with edge length € and midpoint K,
The projection P of a point x in R" onto Q¢ can be com-
puted by projecting each coordinate x; of x onto the interval
Y — &, x¥ + €], where x? is the i-th coordinate of x°. During
the minimization process we search for (usually non-unique)
minima along projected rays. The idea is that whenever a
bound is encountered, the direction of the ray is bent such
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Figure 6: Noise removal from a range image of a part of a Neptune statue (height ~10 cm) with a maximum deviation tolerance

of 0.04 mm.

that the ray remains in the feasible set. The projected ray
starting at a point x with initial direction v is obtained by
projecting the ray x+ ¢ v onto the feasible set, i.e. it is given
by

r(t) = P(x+1tv).

This describes a piecewise linear path that, after first hitting
a face of the feasible set, leads along the boundary. Note
that for any ¢ this can be evaluated by a simple loop over all
coordinates.

The set of active constraints for a point x € Qo . is de-
fined as

0
Xi — X;

=¢}.

For a point away from the boundary the active set is empty,
and for a vertex of the cube Qo . all constraints are active.
Let E: Qo, — R be our energy and let H(x) denote the
Hessian and g(x) the gradient. The Newton direction v(x) at
apointx € Qo ¢ is

v(x) = —(H(x) " 'g(x).

Ax)={ie{1,2,...,n}| ‘

~ The active set method iterates the following two steps. Let
x' be the current position.

1. Cauchy step. Compute the gradient direction g(xi). Find a
point y' along the projected path P(x'+7 g(x')) that produces
a sufficient reduction of energy; i.e. that fulfills

E() < E6) =1 (g).y =), g

where A < 1 is a constant. In our experiments we always set
A =0.01. The last term in the equation uses the gradient to
compute how much decrease of energy we can expect when
moving in direction y' — x". The equation guarantees that the
actual choice of ' produces a decrease that is at least within
a fraction of the estimate which is important to guarantee
rapid decrease of the energy.

2. Subspace minimization. The point y' lies in some face of
the feasible cube Q.o .. In this step we perform a minimiza-
tion step constrained to this face. More specifically: deter-
mine the active set A(yi ) of yi and compute the reduced Hes-
sian H, and the reduced gradient g, with respect to the free
variables. Here reduced means: for all i € A(yi) remove the
i-th column and row from H and the i-th entry from g. Then
compute the reduced Newton direction vi =H, ! gr. The
next position A lisa point on the projected path P(yi +1
vi) that satisfies the condition

E(GT) <E(Y) @
ensuring a decrease of the energy.

A local minimum is reached if the gradient either vanishes
or is orthogonal to the boundary.

In steps 1 and 2 we search for a good point on a pro-
jected ray r(¢). Such a point is found by an iterative proce-
dure, which starting from an initial guess t = 1° either mono-
tonically increases or monotonically decreases the value of
t. It is increasing if the guessed point r(z°) fulfills the de-
scent condition (eq. (3) in step 1 and eq. (4) in step 2) or

(© The Eurographics Association 2007.
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otherwise decreasing. In each iteration the value of ¢ is mul-
tiplied by a factor of 2 (increasing case) or 0.5 (decreasing
case). The iteration terminates if the descent condition is no
longer fulfilled (increasing case) or if it is fulfilled (decreas-
ing case). In the case of an increasing sequence the last value
satistying the descent condition is used. In each Cauchy step
(respectively Newton step) we use the result of the previous
iteration as an initial guess for 7.

4.1. Approximation of the Hessian

Since the Hessian of the discrete bending energy is not nec-
essarily positive definite, there is no guaranty that the New-
ton direction is indeed a descent direction. One way to deal
with this issue is to replace the Hessian by a positive definite
approximation. Note that we only modify the search direc-
tion but still minimize the same energy. This technique is
used in inexact Newton methods.

To approximate the Hessian of the bending energy we use
the Hessian of the thin plate energy with the initial surface as
parameter domain. This matrix has the form SM —1s, where
S is the usual cotan matrix [PP93, DMSB99], and M con-
tains the masses; e.g. M is a diagonal matrix containing the
Voronoi areas. Since the Laplace matrix S has a kernel con-
sisting of the constant functions we add the constant value
0.1 to all diagonal entries of S. The resulting approxima-
tion of the Hessian is positive definite, can be written as the
square of a matrix, and decouples the x, y, and z coordinates.
Therefore the linear systems that need to be solved have bet-
ter condition (the condition number is only the square root of
the original), higher sparsity and lower dimension. This al-
lows the approximate Newton direction to be computed and,
in effect, the method to be applied to larger models. This is
demonstrated on the Chinese lion model with 1.3 m triangles
in Figure 1.

A related approximation of the Hessian of the bending
energy has been proposed and used to accelerate the integra-
tion of Willmore flow in [WBH*07]. A main difference is
that the approximate Hessian we use is a product of square
matrices, whereas their approximation is a product of non-
square matrices.

Efficiently solving the linear system. We need to solve the
linear system

(SM™'S)rvr = gr, )

where g is the gradient of the discrete bending energy eq. (1).
Note that we solve only the reduced system, indicated by
the subindex r. The variables in the active set remain fixed;
the corresponding rows and columns are removed from the
system. It is not necessary to completely solve the system;
approximating the solution by performing only a few itera-
tions of preconditioned conjugate gradients is usually more
efficient for large-scale problems. These type of methods are
called Newton-CG methods. The performance of the method
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essentially depends on the choice of a good preconditioner.
We compute a sparse Cholesky factorization of S only once
as a preprocessing step and use the factorization in each iter-
ation to build a constraint preconditioner [NWO06] for solv-
ing the reduced system (5).

5. Experimental Results

We have tested our method on laser-scanned real-world
models, except for the pelvis model shown in Figure 2 that
has been extracted from computed tomography data. No ar-
tificial noise has been added to the models, we tested the
method with the noise inherent to the scanned data. The only
exceptions are Figures 7 and 8 where artificial noise has been
added to the models in order to have a goal surface for the
comparison of methods.

Noise removal from range images is shown in Figures 3
and 6. These models have a regular quad connectivity which
we triangulated in order to get planar faces. The two range
images differ in size and resolution: the image of the Caesar
model has 190 k triangles and a height of 30 cm whereas the
Neptune model has 270k triangles and a height of 10cm.
Accordingly, we specified a smaller value for the maximum
deviation tolerance for Neptune than for Caesar, 0.04 mm
for Neptune and 0.1 mm for Caesar. These values are much
smaller then the size of features like the eyelids or wrinkles,
which are preserved. The third image of Figure 3 shows the
smoothed Caesar mesh colored by the distance of the ini-
tial (noisy) to the smoothed surface. The colors seem to be
randomly distributed, which indicates that mainly noise has
been removed and little structured deviation, like shrinkage
of features, took place. The Figures 1 and 4 show models
with clean connectivity and filed holes. The Chinese lion
model has 1.3m triangles and a height of 10cm and the
blade has 390k triangles and measures about one meter in
height. We used 0.1 mm maximum deviation tolerance for
the Chinese lion and 1 mm for the blade.

The pelvis model (Figure 2) suffers from artifacts caused
by a rudimentary volume-extraction method. The € maxi-
mum deviation for this model is 1 mm which suffices to pro-
duce a smooth model.

We compare our method to the feature-preserving
anisotropic diffusion as described in [HP04] on the armadillo
model in Figure 8. Despite the larger amount of noise used
in this example, our method produces a result that comes
close to the original surface. The anisotropic diffusion fo-
cusses on preserving the features and even enhances them;
e.g. the teeth are sharper than in the original model. On the
other hand the noise is also preserved for a longer time. At
the instant when the noise is removed, the non-feature re-
gions are already oversmoothed. For the goal of reproducing
the original shape, our method produces better results.

We compare our method to the unconstrained gradient
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Figure 7: Comparison of the constrained optimization and the unconstrained gradient flow of the bending energy on the Caesar
model (a). The model has been artificially corrupted by random noise with 0.2 mm maximum deviation (b), where the height
of the object is 30 cm. The constrained optimization (c) keeps all vertices within 0.2 mm distance. The bottom row shows the
gradient flow at different times. Vertices that leave the 0.2 mm distance are colored red. The first vertices leave the 0.2 mm
distance (d). When the same bending energy is reached (e) the maximum distance is 2 mm and shrinkage effects appear for
example at the eyelids. Further time steps (f) induce more shrinkage.

flow of the bending energy on the Caesar model in Fig-
ure 7. The model has been corrupted by random noise with a
maximal deviation of 0.2 mm, where the height of the object
is 30 cm. The constrained optimization (top row right) keeps
all vertices within 0.2 mm distance to the noisy mesh. The
bottom row shows snapshots of the unconstrained evolution.
Vertices that leave the 0.2 mm distance are colored red. The
first image shows the moment when the first vertices leave
the 0.2 mm distance. The model is still very noisy. When
the fairness energy equals the fairness energy of the surface
produced by the constrained optimization, the maximum dis-
tance is already 2 mm and shrinkage effects appear in regions
with high curvature, e.g. at the eyelids. Further time steps in-
duce more shrinkage.

Shrouds [NGH*03] allows the smoothing of surface
meshes with spatial constraint that are defined with the help

of a volume grid. Our method offers different improvements
over this scheme. Shrouds is only defined for meshes that
enclose a volume, whereas our method can process arbitrary
surface meshes with or without boundary. The maximum de-
viation used for denoising scan data in our examples is very
small; e.g. 0.1 mm for an object that has a bounding box with
edge length 100mm. This means that the volume grid that
Shrouds generates would have about 10° grid points. The
mesh that Shrouds extracts from the volume grid would be
much larger then the initial mesh. Additionally, since the op-
timization method uses a variant of an explicit gradient de-
scent, one expects a large number of iterations.

Optimization procedure. The active set Newton scheme
produces a rapid decrease of energy. All presented exam-
ples, including the 1.3 m triangles Chinese lion model, were
stopped after 10-25 iterations. The most time-consuming op-

(© The Eurographics Association 2007.
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(d)

Figure 8: On the armadillo model (a) that has been artificially corrupted with random noise (b) a comparison of our method (c)
with feature preserving anisotropic diffusion (d) is shown. The anisotropic flow sharpens features, but regarding the reproduction

of the original model the result of our method is much closer.

eration in each iteration is the computation of the Newton
direction, which requires solving a linear system. In compar-
ison to this, the procedure that finds the new position along
a projected ray r(z) is fast.

An alternative optimization procedure to the proposed
Newton scheme would be an explicit projected gradient de-
scent; i.e. the subspace minimization step is skipped. A ben-
efit of this is that one does not need to compute the New-
ton direction, which simplifies the implementation and de-
creases the computational cost of an iteration. On the other
hand, it is well known that for this type of problem an ex-
plicit gradient descent usually requires a large number of
steps. The comparison shown in Table 1 demonstrates that
the explicit gradient descent is only efficient if the mesh has
nicely shaped triangles and the deviation tolerance is very
small; whereas the Newton scheme performs well on all the
examples.

An implicit gradient descent can handle irregular meshes
and larger steps, but the computation of an implicit step itself
requires solving a nonlinear equation, cp. [WBH*07]. Even
if the equation is linearized (semi-implicit scheme) the cost
of computing the gradient direction is comparable to the cost
of computing the Newton direction.

Future work. Future work addresses extending the ap-
proach to point cloud surfaces. This would remove the need
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Model #T Max. Tol. ' Newton Exp. Gradient
in mm #iter | cost(s) | #iter | cost(s)
Caesar 190k 0.1 20 103 95 172
Caesar 190k 0.3 20 101 >500 >850
Blade 390k 1 15 216 90 364
Blade 390k 3 15 209 >500 | >2000
Blade* 100k 1 15 48 250 278

Table 1: A comparison of running times of the proposed
Newton scheme and an explicit gradient descent is shown.
Different values of the maximum deviation tolerance were
tested on the Caesar and the blade model. The procedures
were stopped at equal values of the energy. The last row
shows running times of the methods on an irregular mesh
generated by simplifying the blade model.

to generate a mesh before being able to apply the method
to scan data. We are interested in developing strategies to
estimate the accuracy of the scan, which would help to auto-
mate the smoothing process. Moreover we experiment with
weighted maximum deviation measures.
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