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This document contains additional experiments concerned with the evalu-

ation of the Hierarchical Subspace Iteration Method, which is introduced

in [Nasikun and Hildebrandt 2021].

1 JUSTIFICATION OF DESIGN CHOICES

In this section, we present experiments that address the justification

of our design and evaluation choices for the Hierarchical Subspace

Iteration Method (HSIM).

1.1 Distance computation

The construction of the basis functions, see Equation (11) in [Nasikun

and Hildebrandt 2021], requires the computation of geodesic dis-

tances. For the evaluation of HSIM, we used Dijkstra’s algorithm

on the weighted edge graph of the mesh using the edge lengths

as weights. Since the basis functions have local support, we stop

the single source Dijkstra computation when all vertices in the

support of the basis function have been processed. Alternatives to

Dijkstra’s algorithm are the Short Term Vector Dijkstra (STVD) algo-

rithm [Campen et al. 2013] and the Heat Method [Crane et al. 2013].

Table 1 compares timings and iteration counts obtained by using

Dijkstra’s algorithm, the STVD algorithm and the heat method for

basis construction. One can see that the required numbers of itera-

tions are similar for all three methods with some slight variations.

Therefore, the timings for the case that Dijkstra’s algorithm is used

are comparable to those when the STVD algorithm is used. There is

only a small overhead resulting from the additional computational

effort of the STVD algorithm compared to Dijkstra’s algorithm. The

heat method is much slower since for each point the distance to all

other points is computed instead of only in a local neighborhood.

We would like to note that there are also possibilities to localize the

distance computation with the heat method [Herholz et al. 2017].

This, however, would be beyond the scope of this experiment. These

results illustrate our impression that the STVD algorithm or a lo-

calized version of the heat method can be used as alternatives for

the basis construction. Since we did not observe any substantial ad-

vantages of STVD or the Heat method over Dijkstra’s algorithm in

our experiments, and to keep the method simple, we used Dijkstra’s

algorithm for our evaluation of HSIM.
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Model

(#Verts.)
Type Acc. Hier.

Solve

Total

Iter Time

Gargoyle

(85k)

Dijkstra

1e-2

2.2

F|1|1 8.4 10.5

1e-4 F|3|3 15.8 18.0

STVD

1e-2

4.0

F|1|1 8.9 13.0

1e-4 F|4|4 20.8 24.8

Heat M.

1e-2

203.6

F|1|1 10.4 214.0

1e-4 F|4|3 22.6 226.2

Fertility

(270k)

Dijkstra

1e-2

9.6

F|1|1 26.2 35.8

1e-4 F|3|4 59.3 68.9

STVD

1e-2

30.4

F|1|1 27.3 57.7

1e-4 F|3|2 44.8 75.2

Heat M.

1e-2

1218.8

F|1|1 30.8 1249.6

1e-4 F|3|3 53.7 1272.5

Oil-pump

(570k)

Dijkstra

1e-2

30.3

F|1|1 63.6 93.9

1e-4 F|4|3 112.6 142.8

STVD

1e-2

100.1

F|1|1 65.6 166.6

1e-4 F|4|3 113.1 214.1

Heat M.

1e-2

4339.4

F|2|2 88.9 4628.3

1e-4 F|4|4 136.6 4676.0

Table 1. The timings and iteration counts for computing 100 eigenpairs on

different meshes with three different schemes for approximating the geo-

desic distances are shown. The timings for the construction of the hierarchy

are additionally listed.

Fig. 1. Results of vertex hierarchy construction using farthest point sampling

on meshes with spatially varying sampling densities are shown.

1.2 Sampling method

The nested function spaces we use for HSIM are constructed from a

vertex hierarchy, which assigns a level to every vertex of the mesh.

We use farthest point sampling for computing the distribution of
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Fig. 2. Results of vertex hierarchy construction using farthest point sampling

are shown for four meshes that approximate the same surface but have

different spatially varying sampling densities.

(a) HSIM, 10k vertices (b) HSIM, 100k vertices

(c) HSIM, 1m vertices (d) IPM, 100k vertices

Fig. 3. Relative difference of numerical approximations of the eigenvalues

of the unit sphere to the analytic solutions.

(a) Eigenvalues (b) Eigenvectors

Fig. 4. Comparisons of the relative difference of the eigenvalues and the

eigenvectors between two meshes that approximate the same surface (blue

graph) and solutions for different tolerance on one of themeshes (red graph).

(a) Bimba, 100k (b) Nefertiti 100k

(c) Ramses 100k (d) Ramses, 500k.

Fig. 5. For four pairs of meshes, each pair approximating the same surface,

comparisons of the relative differences between the eigenvalues of the two

meshes (blue graphs) and solutions for different convergence tolerance on

one of the meshes (red graphs) are shown.

the vertices. In this section, we show examples of vertex hierarchies

on different meshes to illustrate why we think farthest point sam-

pling is suitable for this process. In the examples, we use meshes

with spatially varying resolution, in some areas of the surfaces the

triangles are much smaller than in others. Figure 1 shows vertex

hierarchies on four surfaces. The hierarchies shown have four levels,

color-coded in red, blue, and green, with the finest levels encompass-

ing all vertices and not shown. It can be seen that the vertices in the

different levels are distributed fairly uniformly over the surface de-

spite the irregular mesh. In Figure 2 four more examples are shown.

In this case, we show vertex hierarchies with the same numbers

of vertices in each level on different meshes that approximate the

same surface. As illustrated in the shown results, we consider the

farthest point sampling as a suitable method to build up the vertex

hierarchies for HSIM.

Alternative sampling schemes such as Poisson disk sampling

[Corsini et al. 2012], which is used in [Nasikun et al. 2018] for the

construction of function spaces, could be used instead of farthest

point sampling. Figure 6 shows a comparison of samplings produced

with farthest point sampling and Poisson disk sampling. A potential

benefit of Poisson disk sampling is that the sampling step could be

accelerated. Table 2 compares timings required to compute Pois-

son disk and farthest point samplings of different size on different

meshes. On the other hand, Poisson disk sampling also has draw-

backs compared to farthest point sampling. While farthest point

sampling measures intrinsic distances in the surface, the Poisson

disk sampling we compare to uses distances in ambient space, which

may deviate when coarser samplings are computed. Another point

is that farthest point samplings can be easily split into a hierarchy

of levels. For Poisson disk sampling, a division would have to be

computed. Lastly, the control parameter for Poisson disk sampling

is the disk size rather than the number of samples and our hierarchy
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Model (#Vertices) #Eigs #Samples FPS PDS

50 1k 1.08 0.07

250 11.7k 2.01 0.18Kitten (137k)

1000 16.6k 2.37 0.24

50 1k 1.37 0.11

250 14.1k 2.93 0.24Vase-Lion (200k)

1000 200k 3.42 0.32

50 1k 4.25 0.27

250 21.9k 9.96 0.54Knot-Stars (450k)

1000 30.9k 11.98 0.68

50 1k 5.05 0.38

250 23.9k 12.12 0.64Oilpump (570k)

1000 33.8k 14.59 0.77

50 1k 5.09 0.46

250 26.5k 14.69 0.71Red-Circular (700k)

1000 37.5k 17.64 0.91

Table 2. Comparison of computation time (in seconds) of farthest point

sampling (FPS) and Poisson-disk sampling (PDS).

construction prescribes the number of samples in each level. We

show a visual comparison of the point samplings produced by both

sampling methods in Figure 6.

1.3 Convergence tolerance

This paragraph includes further experiments related to the discus-

sion of the convergence tolerance that we used for the evaluation of

HSIM, see also Section 5 of [Nasikun and Hildebrandt 2021]. Figure 3

shows a variant of Figure 7 from [Nasikun and Hildebrandt 2021],

where we consider non-regular meshes inscribed to the sphere. Fig-

ure 4 shows a variant of Figure 8 from [Nasikun and Hildebrandt

2021], using a different mesh.

In Figure 5, we show results of an additional experiment. As in

Figure 4, we computed eigenpairs on two meshes with tolerances

𝜀 = 10
−2

and as reference with 𝜀 = 10
−8
. We generated the meshes

by simplifying one mesh with two different mesh coarsening al-

gorithms. We used the Bimba mesh with 500k vertices to get two

simplified meshes with 100k vertices each, the Nefertiti mesh with

1m vertices to obtain two simplified meshes with 100k vertices and

the Ramses mesh with 750k vertices to get two meshes with 500k

vertices and two meshes with 100k vertices. In Figure 5, we plot for

all four pairs of meshes the differences between the reference results

that are computed with a tolerance of 𝜀 = 10
−8

on both meshes

and for one mesh the difference between the results for 𝜀 = 10
−2

and 𝜀 = 10
−8
. For all four pairs of meshes, the difference between

the reference results on the two meshes is much larger than the

difference between the results for 𝜀 = 10
−2

and 𝜀 = 10
−8
.

2 COMPARISONS

In this section, we show additional comparisons to alternative ap-

proaches for solving eigenproblems.

Fig. 6. Samplings we computed with farthest point sampling (left) and

Poisson disk sampling (right).

2.1 Lanczos and preconditioned eigensolver

In Section 6 of [Nasikun and Hildebrandt 2021], the timings of HSIM

are compared with the timings of Lanczos solvers and LOBPCG. Ta-

ble 3 shows additional results that complement Table 2 in [Nasikun

and Hildebrandt 2021].

Model #Verts. #Eigs. HSIM Matlab LOBPCG

Gargoyle 85k

50 4.2 5.1 27.1

250 19.9 49.3 154.7

1000 88.6 442.3 995.0

Chinese Dragon 135k

50 7.5 7.6 57.7

250 30.5 56.3 298.0

1000 127.5 523.3 1678.7

Dragon 150k

50 7.2 9.6 83.0

250 36.5 65.7 325.1

1000 143.8 795.9 2102.5

Blade 200k

50 10.5 14.1 97.9

250 49.2 93.9 453.6

1000 177.8 1091.9 2591.0

Fertility 240k

50 14.6 16.6 133.3

250 90.8 121.6 678.6

1000 236.1 1369.9 4003.0

Rocker-Arm 270k

50 17.5 22.2 135.9

250 73.9 175.8 744.4

1000 252.1 1537.2 4837.9

Pulley 300k

50 19.5 21.1 228.3

250 85.3 222.1 837.3

1000 339.5 1795.0 5416.9

Eros 400k

50 30.7 43.6 194.5

250 127.2 267.7 1305.5

1000 322.6 2748.4 Mem. Bound

Bimba 500k

50 29.4 31.4 236.1

250 132.8 254.9 1255.3

1000 569.3 3208.0 Mem. Bound

Oilpump 570k

50 41.1 46.1 310.3

250 154.2 315.6 1864.4

1000 690.9 3354.7 Mem. Bound

Rolling stage 680k

50 54.6 57.8 326.3

250 197.6 386.5 2301.2

1000 891.6 4064.1 Mem. Bound

Ramses 825k

50 49.1 62.6 458.9

250 221.4 413.4 2339.9

1000 1149.1 4979.2 Mem. Bound

Nefertiti 1m

50 64.0 62.8 396.2

250 305.4 682.7 2482.2

500 277.9 1654.5 Mem. Bound

Table 3. Comparisons of timings of HSIM, Matlab’s Lanczos solver and

LOBPCG for Laplace–Beltrami eigenproblems on different meshes. Render-

ings of the meshes are show in Figure 7.
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Model #Eigs

Laplacian Hamiltonian (t=0.1) Hamiltonian (t=1.0)

Hier. Solve #Iter Total Hier. Solve #Iter Total Hier. Solve #Iter Total

Cube (25k)

50 0.3 2.1 F|1 2.4 0.3 2.1 F|1 2.4 0.3 2.1 F|1 2.4

250 0.6 6.7 F|1|1 7.3 0.7 6.6 F|1|1 7.3 0.7 9.2 F|3|1 9.9

1000 0.7 67.1 F|5|2 66.8 0.8 65.9 F|5|2 66.8 0.6 67.3 F|5|2 67.9

Blade (200k)

50 2.8 7.4 F|1 10.2 2.9 7.4 F|1 10.3 2.8 10.5 F|2 13.3

250 7.3 42.8 F|2|1 50.1 7.1 42.7 F|2|1 49.8 7.2 45.8 F|3|1 53.0

1000 8.8 158.7 F|2|1 167.5 8.8 167.5 F|2|1 176.3 8.9 204.0 F|4|1 212.9

Bimba (500k)

50 7.9 22.6 F|1 30.5 8.0 23.8 F|1 31.7 7.7 30.9 F|2 38.7

250 26.4 105.1 F|2|1 131.6 26.4 106.8 F|2|1 133.2 26.3 121.3 F|3|1 147.6

1000 34.1 519.5 F|3|1 553.6 33.5 510.0 F|3|1 543.5 34.9 643.3 F|6|1 678.2

Table 4. Timings and iteration counts for Laplace–Beltrami and Hamiltonian eigenproblems are shown.

Fig. 7. Renderings of the meshes used for the comparisons listed in Table 3.

2.2 Fast Approximation

We compareHSIMwith the fast approximationmethod from [Nasikun

et al. 2018]. The approximation method has the advantage that the

computation times are much shorter and storing the approximate

eigenfunctions requires less memory. On the other hand, the ap-

proximation errors of [Nasikun et al. 2018] are much larger than the

errors resulting from HSIM. The top row of Figure 8 shows plots of

residuals of eigenpairs computed with the approximation scheme

from [Nasikun et al. 2018] and compares them with the residuals

from HSIM with tolerances 𝜖 = 10
−2

and 𝜖 = 10
−4
. The residuals

obtained for the approximation scheme from [Nasikun et al. 2018]

are 10
0
. In contrast, HSIM allows for controlling the residuals. The

bottom row of the figure additionally shows the computed eigen-

values. While visually there is no difference between the two HSIM

results, the eigenvalues computed with [Nasikun et al. 2018] differ

significantly from the results of HSIM. We would like to note that

in [Nasikun et al. 2018] it is advised to use only the first half of

the computed eigenvalues. However, significant deviations can be

observed in the first half as well.

3 GENERALIZATION

3.1 Hamiltonian operators

Our evaluation of HSIM is focused on Laplace–Beltrami eigenprob-

lems. In this section, we consider a related operator, the Hamiltonian

operator, and present some results for solving Hamiltonian eigen-

problems using HSIM. For a background on Hamiltonian operators

and their use in spectral analysis, we refer to [Choukroun et al.

2020]. The Hamilton operators on surfaces we consider are of the

form

𝐻 : 𝑢 → Δ𝑢 +𝑉𝑢,
where Δ is the Laplace–Beltrami operator and 𝑉 a scalar potential

function. For our experiments, we used the scalar potential

𝑉 = 𝑡 (𝜅2
1
+ 𝜅2

2
),

(a) 32 eigenpairs (b) 250 eigenpairs

(c) 32 eigenpairs (d) 250 eigenpairs

Fig. 8. Top row: Plot of the residuals for the computation of the lowest

32 and 250 Laplace–Beltrami eigenvalues of the Dragon model with 150k

vertices. Results for the fast approximation scheme from [Nasikun et al.

2018] and HSIM with tolerance 𝜀 = 10
−2

and 𝜀 = 10
−4

are shown. Bottom

row: The computed eigenvalues are plotted.
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Fig. 9. Points similar to a fingertip of the armadillo mesh and to a toe tip for the dinosaur mesh are indicated by binary color-coding. The similarity is

computed using the heat kernel distance. Results for heat kernel distance estimation using 100 and 1000 eigenpairs are shown.

Fig. 10. Geometric reconstruction of the Centaur model (left-most) using an increasing number of Laplace–Beltrami eigenfunctions. A sufficient number of

eigenfunctions is required to obtain reconstruction that preserves details of the shape.

where 𝑡 ∈ R≥0 and 𝜅1 and 𝜅2 are the principal curvatures. The

eigenmodes of this operator have been studied in the context of

shape analysis in [Hildebrandt et al. 2010, 2012]. In contrast to the

Laplace–Beltrami eigenfunctions, the eigenfunctions of this opera-

tor depend not only on the intrinsic properties of the surface but

also on its extrinsic curvatures. Even for 𝑡 = 0.1, the eigenfunc-

tions of this operator are fundamentally different from those of the

Laplace–Beltrami operator as illustrated in Figure 11. Table 4 lists

iteration counts and timings for solving Hamiltonian eigenproblems

Fig. 11. Eigenfunctions of the Hamilton operator are shown.

for 𝛼 = 0.1 and 𝛼 = 1. As a reference, we also list the timings for

the corresponding Laplace–Beltrami eigenproblem. For 𝛼 = 0.1, we

obtain almost the same timings as for the Laplace–Beltrami eigen-

problems and for 𝛼 = 1, we noticed in some cases an increase of the

required computation time of up to 30%.

4 APPLICATIONS

In this section, we consider methods that use the Laplace–Beltrami

eigenfunctions for shape analysis and processing. We demonstrate

that the methods can benefit from using a larger number of eigen-

functions. HSIM facilitates the computation of larger numbers of

eigenfunctions.

(a) Gargoyle (b) Chinese Dragon

Fig. 12. Heat Kernel Signatures (HKS) computed with 100 and 1000 eigen-

pairs are shown.
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4.1 Shape Signatures

We first consider the Heat Kernel Signature [Sun et al. 2009] as

an example of a shape signature. Figure 12 shows the Heat Kernel

Signature color-coded on two meshes. For both meshes, results

using 100 and 1000 eigenfunctions are shown. One can see that the

surface details such as the curls of the Chinese lion model are better

resolved when 1000 eigenfunctions are used. As a consequence,

the Heat Kernel Distance delivers better results for finding similar

points on a surface when more eigenfunctions are used. Figure 9

shows results where similar points to a given point are searched.

The results are shown by binary color-coding, where similar points

are orange. On the Armadillo mesh, a point at a fingertip is given

and on the dinosaur mesh, a point on a toe is given. It can be seen

that if 1000 eigenfunctions are used, on both meshes all fingertips

and toe tips are found. For 100 eigenfunctions this is not the case.

Only about half of the fingertips and toes are found.

4.2 Projection

Methods such as mesh filtering [Vallet and Lévy 2008] and mesh

compression [Karni and Gotsman 2000] need to project the embed-

ding of a surface to the space spanned by the lowest𝑛 eigenfunctions.

Figure 10 shows the results of this projection for the centaur mesh

with different values of 𝑛 ranging from 10 to 4000. One can see

that the higher the number of eigenfunctions is, the more surface

details are preserved. Even when 2000 eigenfunctions are used, the

resulting projection is visually smoother than the original mesh.

REFERENCES

Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical Anisotropic

Geodesy. Comp. Graph. Forum 32, 5 (2013), 63–71.

Yoni Choukroun, Alon Shtern, Alexander M. Bronstein, and Ron Kimmel. 2020. Hamil-

tonian Operator for Spectral Shape Analysis. IEEE Trans. Vis. Comput. Graph. 26, 2
(2020), 1320–1331.

Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. 2012. Efficient and flexible

sampling with blue noise properties of triangular meshes. IEEE Transactions on
Visualization and Computer Graphics 18, 6 (2012), 914–924.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A

new approach to computing distance based on heat flow. ACM Transactions on
Graphics (TOG) 32, 5 (2013), 1–11.

Philipp Herholz, Timothy A. Davis, and Marc Alexa. 2017. Localized solutions of

sparse linear systems for geometry processing. ACM Trans. Graph. 36, 6 (2017),

183:1–183:8.

Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier.

2010. Eigenmodes of surface energies for shape analysis. In Advances in Geometric
Modeling and Processing (Lecture Notes in Computer Science, Vol. 6130). Springer,
296–314.

Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier.

2012. Modal shape analysis beyond Laplacian. Computer Aided Geometric Design 29,

5 (2012), 204–218.

Zachi Karni and Craig Gotsman. 2000. Spectral Compression of Mesh Geometry. In

ACM SIGGRAPH. 279–286.
Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation

of Laplace–Beltrami Eigenproblems. Comp. Graph. Forum 37, 5 (2018).

Ahmad Nasikun and Klaus Hildebrandt. 2021. The Hierarchical Subspace Iteration

Method for Laplace–Beltrami Eigenproblems. (2021).

Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. 2009. A Concise and Provably

Informative Multi-Scale Signature Based on Heat Diffusion. Comp. Graph. Forum
28, 5 (2009), 1383–1392.

Bruno Vallet and Bruno Lévy. 2008. Spectral Geometry Processing with Manifold

Harmonics. Comp. Graph. Forum 27, 2 (2008), 251–260.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.


