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ABSTRACT

Discretized Marching Cubes (DMC) is a standard method in computer graphics and visualization for constructing 3D surfaces
in data represented on a regular grid. After thresholding, it builds high-resolution surfaces by tiling surface patches halfway
between objects and background in the data. This paper shows that if surfaces are built locally, in a high-resolution sub-grid
of a cell instead of directly in a cell, sharp surfaces can be generated in order to preserve concave and convex object features.
The main advantage is the improved geometric models that are extracted. This makes lower approximation errors and lower
triangle counts possible.

Keywords: Computer Graphics: Curve, surface, solid, and object representations; Computer aided design (modeling of
curves and surfaces); Computational geometry; Image processing.

1 INTRODUCTION

Volumetric models are defined on a regular data grid
and can either be rendered with direct volume render-
ing techniques or with fast polygon rendering hardware.
The latter only after extracting a surface model from
the voxel data by surface construction algorithms like
Marching Cubes [7]. In the last two decades a lot of
research has been dedicated to improving the MC al-
gorithm, both topologically [12, 14, 5] and in terms of
reduced triangle counts [11, 13]. To reduce the number
of degenerated triangles and to make it easier to merge
smaller triangles into larger surface patches, the Dis-
crete Marching Cubes (DMC) algorithm [8] fixes the
position of the nodes of the triangulation to the mid-
points of the cell edges. This reduces the number of
orientations of the triangles to a limited set of discrete
orientations, which facilitates merging the triangles into
larger surface patches.

MC and DMC methods were originally designed for
extracting and visualizing isosurfaces for gray shaded
data, but they can also be advantageously used for (seg-
mented, thresholded) binary voxel data, because they
generate a surface in between the object and the back-
ground, and in this way they always create a manifold
surface, also for isolated points, lines and thin planes.
By constructing surfaces at a spatial resolution that is
higher than the spatial resolution of the original voxel
data we have room to build a manifold surface. Indeed,
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as was stated by the authors of MC, the spatial resolu-
tion of the surface is higher than that of the data [7].

Although DMC generates manifold surfaces and op-
timizes the triangle output, it has one remaining draw-
back: it creates oblique surfaces at object slopes but
also at sharp edges and corners. In this paper we show
that the standard surface mapping by DMC can be de-
rived from a much simpler triangulation on the eight
sub-cells of each cell. By locally refining the grid and
applying a complementary surface model we can pre-
serve sharp features such as convex and concave edges
and corners.

The structure of the paper is as follows. First we
introduce the necessary terminology in Section 2. In
Section 3 we show how to construct a 3×3×3 sub-grid
for each cell by dividing the cell into eight sub-cells,
classify the new intermediate nodes as object or back-
ground, and give the surface model which can be used
on the sub-grid and which results in surfaces which are
topologically equivalent to those generated by DMC. In
Section 4 we show that if we know a priori which fea-
tures are concave and convex, we can modify the sub-
grid and refine the surface model of Section 3. The pa-
per concludes with results in Section 5 and a discussion
in Section 6.

2 BASIC NOTIONS
We assume that data are represented on a regular dis-
crete cubic grid which is called the data grid, say of
size x×y×z. The x, y and z-axes of the grid form an
orthogonal space such that xy-planes are always per-
pendicular to xz- and yz-planes and xz-planes to yz-
planes. The grid contains x×y×z cubic elements which
are called voxels. The 6-neighborhood (respectively,
18-, 26-neighborhood) of a voxel at data grid posi-
tion (x,y,z) is comprised by those voxels for which
|x− a|+ |y− b|+ |z− c| ≤ 1 (2, 3), with (a,b,c) ar-
bitrary voxel coordinates. Two voxels are n-adjacent if

Short Communication papers 103 ISBN 978-80-86943-02-2



Figure 1: a) 3×3 data grid with 2×2 cuberilles b) 6-,
18- and 26-adjacency c) sub-grid with 4×4 cuberilles

they are n-neighbors. The neighborhood of a voxel is a
3×3×3 voxel block with the voxel itself in the center.
In a voxel neighborhood the center voxel has 26 neigh-
bors from which 6 voxels have a Manhattan distance of
one, 12 voxels a distance of two, and 8 voxels a distance
of three steps in orthogonal directions. At the data grid
each voxel can be assigned a different data value. We
limit ourselves to binary data values where 1 (black)
denotes foreground/object and 0 (white) background.

Given the data grid we can define a cell grid with size
(x− 1)×(y− 1)×(z− 1) in between the voxel centers
such that the eight cell corners of each cell are at eight
neighboring voxel centers (see Figure 1). The nodes at
the cell grid uniquely correspond to the object and back-
ground voxels at the data grid. Therefore, the neighbor
and adjacency definitions which have been defined for
voxels also apply to nodes. Thus, we can speak of ob-
ject (black) nodes and background (white) nodes. Con-
figurations are unique patterns of black and white nodes
in a cell. “Don’t care” nodes will be used in configura-
tions in order to indicate that these nodes may either be-
long to the object or the background. We define a higher
resolution sub-grid by subdividing each cell into eight
sub-cells (2×2×2). The new sub-grid nodes lay in be-
tween the grid nodes. There are eight unique sub-cells
in the sub-grid of a cell. Original DMC space refers
to the unique 2×2×2 nodes of cells. DMC sub-space
refers to the unique 3×3×3 sub-grids of cells.

A path is a 6-path (respectively, 18-, 26-path) if it
is a sequence of nodes n0...nn−1 on the cuberille grid
such that ni is 6-adjacent (18-, 26-adjacent) to ni−1 for
i = [1,n−1]. A path is called a closed path if n0 = nn−1.
Two nodes are, respectively, 6-, 18- or 26-connected
if there exists a 6-, 18- or 26-path between them. A
component is a set of nodes and is, respectively, 6-, 18-
or 26-connected if every pair of nodes in the component
is 6-, 18- or 26-connected.

The DMC method generates a surface in between the
object and background voxels through the nodes of the
sub-grid. There are 256 possible patterns of black and
white nodes in a cell which define 16 unique configura-
tions, each with a corresponding triangulation. We call
the set of these configurations a surface model. A tri-
angulation is defined by the mapping of all cells at the
cuberille grid with a surface model and yields a surface.

It is possible to generate many different topologically
surface models, either based on (6,26), (6,18), (18,6)
and (26,6) connectivity [5, 1] or hybrids. Kenmochi
et al. [3] introduce a hybrid surface model that only
uses 26-connectivity between nodes if it is part of a
3D-simplex, i.e. if there is an alternative 6/18-path be-
tween the nodes in a cell. In [6] we introduce a surface
model that only has 18-connectivity if there exists an al-
ternative 6-path between nodes in a cell. The Kenmochi
model gives “priority” to the object and our model gives
priority to the background. In [6] it is shown that the
DMC triangulation is based on the background priority
model.

In this paper we show that by performing the triangu-
lation on the sub-grid (cuberille) level, we can combine
Object Priority (OP) and Background Priority (BP) tri-
angulation schemes within one object. This allows us to
use different triangulation schemes for convex and con-
cave edges and vertices. In this way we can maintain
sharp features within objects.

Figure 2: The original DMC configurations can be de-
rived from the face configurations (a-d). The alterna-
tive “object priority” version can be derived with e in-
stead of c

The triangulation patterns for the configurations of
the Object- and Background-Priority models can be
built from reduced sets of basic triangulation patterns
that use don’t care nodes for positions that can either be
black or white. Figure 3 shows the basic patterns for
the OP model and Figure 4 for the BP model. We note
that in each configuration of Figure 3 with don’t cares
(K4-K7), at least one of the don’t cares must be black.

3 SIMPLIFIED DMC SURFACE
MODEL

In this section we first derive the connectivity model
whereupon DMC is based. Then, we give a construc-
tion algorithm with which the sub-grid can be computed
for any cell. Finally we show that the BP model can be
used as a simplified surface model with which the DMC
surface model can be generated on the sub-grid.

3.1 Interpretation of DMC
Color plate 1 shows the lookup table (lut) of the orig-
inal DMC algorithm. If we don’t pay attention to the
gray and red spheres, the lut is equal to the one in
DMC [8]. It contains 16 configurations. It shows all
black-white combinations which are possible in a cell
and their surface maps, except for inverse cases which
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Figure 3: The seven configurations of the Object Prior-
ity model denoted with object nodes as black spheres,
background nodes as white spheres and don’t care
nodes without spheres. The bottom left node in the
back which is not always visible either belongs to the
object (configuration 3) or is a don’t care node (config-
urations 4 to 7)

Figure 4: The six configurations T1− T6 of the sim-
plified surface or Background Priority model which can
be applied in DMC sub-space. The bottom left node
in the back now always belongs to the object. These
configurations can be derived from the original DMC
method (Color plates 1 and 2)

are obtained by swapping the black nodes to white ones
and the white nodes to black ones. The inverse con-
figurations of the configurations with four black and
four white nodes (h-m) yield symmetric triangulations
which can be found by rotation and projection of h to
m. The inverse configurations of a, b, d and e also yield
symmetric triangulations. These cases can be seen in
Color plate 2. The inverse configurations of c, f and g
are o, p and n, respectively. The triangulation of these
cases is not symmetric: g and n, c and o, and f and p
yield different triangulations for black-white compared
to white-black patterns. This shows that DMC im-
plements (6,18)-connectivity. For instance the (18,6)-
connectivity model would connect the two 6-connected
components which are 18-adjacent in configuration n.

We may observe that the authors of the DMC method
gave priority to the background (6,18) instead of to
the object, because otherwise the configurations would
have been based on face configuration e in Figure 2
instead of on c. Of course, it is arbitrary whether we
choose the one over the other, but it is necessary to be
consistent in order to avoid ambiguous cases.

The connectivity is (6,18) and not (6,26) otherwise
the inverse version of configuration d (Color plate 2:
s) would have a white diagonal (tunnel) which is not

the case. The (6,18)-connectivity of the DMC surface
model reduces the chances that non-manifold situations
do occur. For instance (18,6)-connectivity would create
non-manifold situations in configurations l and n. It
appears that the BP-triangulation on the high-resolution
sub-grid complies with the (6,18)-node connectivity of
the DMC model. However, it is clear that the BP model
is not always the best choice, as in some situations the
OP surface model would better represent the object. For
example, if one wants to generate a convex edge in the
triangulation of configuration t, the OP model would be
a better choice.

In summary, with regard to the original DMC con-
figurations (disregard gray and red spheres in Color
plate 1), we can make the following observations:

• the DMC surface model is topologically equivalent
to MC [9] (two shapes are topologically equivalent
if they can be deformed into each other by a contin-
uous, invertible mapping [2])

• in the DMC surface model, priority is given to the
background instead of to the object. The a priori
topology corresponds to (6,18)-connectivity, i.e. 6-
connectivity for the object and 18-connectivity for
the background

• object components which are 18- or 26-adjacent get
partitioned into separate 6-connected components

Application of the DMC surface model yields a mani-
fold surface for each 6-connected component of the ob-
ject (recall the definition of a 6-connected component
from Section 2). We see that DMC generates a sur-
face in between the white and black nodes. The surface
passes through the nodes of the sub-grid (red nodes).
In this way, also for singular object nodes there always
is a closed manifold surface around the node. So each
6-connected component is embedded in a manifold sur-
face even if it is one voxel thin. In the DMC-method
the sub-grid is implicitly used but never explicitly gen-
erated. We will propose a new surface model that gen-
erates the DMC configurations from the sub-grid ex-
plicitly. Before we can apply the new surface model
to each individual sub-cell, we first have to classify the
intermediate sub-grid nodes as being black or white.

3.2 Sub-grid construction

To create a classified sub-grid we first must initialize a
sub-grid of size 3×3×3 with white nodes. Then, we
copy any black nodes at the cell to the corresponding
nodes at the sub-grid. Last, we determine which nodes
in the rest of the sub-grid must be set to black. The latter
can be done in a two-pass process in which we first in-
terpolate along the 6- and 18-edges/diagonals and then
extrapolate from black nodes to 6-neighboring white
nodes.
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Figure 5: Example of the sub-grid construction algo-
rithm: sub-grid after copying black nodes (a), interpo-
lation (b) and extrapolation (c)

Figure 6: Example of surfacing variants at convex di-
agonal edges between 26-adjacent black nodes, from
left to right: original surface, surface with BP model af-
ter extended interpolation, surface with OP model after
extended interpolation

Figure 5 exemplifies the sub-grid construction for one
configuration (a projected version of DMC-p). The
construction algorithm sets for a cell with any input
data the nodes at the sub-grid such that it exactly corre-
sponds to DMC (as can be verified in Color plate 1).

3.3 Simplified surface model
Now we can define a new surface mapping in the high-
resolution sub-grid of a cell. It turns out that we can
do the mapping independently in each of the eight oc-
tants of the 3×3×3 sub-grid and build the DMC trian-
gulation by applying the BP surface model to each in-
dividual sub-cell [6]. Since Color plates 1 and 2 list all
possible black-white combinations in a cell other con-
figurations than those listed in Figure 4 are not possible
in DMC sub-space.

Application of the BP surface model (Figure 4) in
DMC sub-space yields surfaces which are topologically
equivalent to the ones generated by the surface mapping
with the DMC lut in original DMC space.

4 REFINED SURFACE MODEL
A drawback of the DMC model is that it always gen-
erates oblique surface patches also at edges and cor-
ners where a sharp convex or concave edge or corner
are desirable. Another drawback is the stair casing at
the missing 26-diagonals. The latter we can repair by
locally applying the OP surface model (see Figure 6).
Sharp edges can be introduced by extending the sub-
grid in the convex case and refining the BP surface
model in the concave case. Thus, we propose two ex-
tensions to standard DMC surfacing:

1. adding extra black nodes and applying the OP sur-
face model for convex edges and corners

2. applying a refined BP surface model for concave
edges and corners

We will consider three different types of object edges
and two different types of object corners: (1) diago-
nal edges which are not aligned with the 3D grid be-
tween two 26-adjacent black nodes in a cell; (2) diag-
onal edges which are not aligned with the 3D grid be-
tween two 18-adjacent black nodes in a cell face; (3)
right edges which are aligned with the 3D grid between
two 6-adjacent black nodes on a cell edge; (4) right cor-
ners which are aligned with the 3D grid between three
6-adjacent black nodes; (5) diagonal corners which are
not aligned with the 3D grid between three 18-adjacent
black nodes.

There are geometrically three different situations in
which the output surface can be adapted to become
more concave or more convex: (A) At an edge node in
a cell face, i.e. a black node which has one 18-adjacent
white node in a face and two 6-adjacent black nodes in
the same face, the surface can be modeled inwards the
object to the edge node for a concavity, or outwards the
object to the white node in order to make it more con-
vex. (B) The same holds for a corner node in a cell,
i.e. a black node with a 26-adjacent white node. See
for example T4 and T6 in Figure 4. In T6 we might
know that the (hidden) black node at the bottom left is
a concavity in the object. In this case the standard trian-
gulation could be adapted to form a sharp point towards
that node. Also, if the don’t care node at the top in T4
is black (and the other white) and we know that that
node is a convexity of the object, the triangulation could
be adapted similarly to form a sharp point outwards.
(C) At a diagonal edge between two 18-adjacent black
nodes in a cell face or a diagonal edge between two 26-
adjacent black nodes in a cell, the two black nodes are
never directly connected because in DMC preference is
given to the white diagonal. However, if the two black
nodes form a convex object edge they should be con-
nected and the triangulation should be directed towards
the black diagonal. Figure 6 exemplifies this.

In the concave case, we must refine the standard tri-
angulation patterns (T1-T6) so that the surface passes
correctly through the concave edge/corner nodes. In the
convex case, we first must modify the sub-grid by prop-
agating the convex edge/corner nodes and black diago-
nals on the grid and then substitute the standard triangu-
lation patterns of the BP model by the convex patterns
of the OP model. In both cases, under strict conditions
it is allowed to locally deviate from the “default” BP
surface model; see Sections 4.2 and 4.3.

In this section we will first define some local filters
for detecting sharp object features. Then we describe
the modifications which are necessary in the sub-grid
construction and in the triangulation, first for the convex
case and then for the concave case.
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4.1 Feature detection
Feature detection can be supervised or unsupervised,
depending on whether a user or an automatic method
indicates which object edges and corners must be trian-
gulated convex and concave instead of oblique. In our
framework different algorithms can be incorporated be-
cause it does not depend on a specific edge and/or cor-
ner detection algorithm. In order to test our triangula-
tion methods we developed some simple ad hoc filters
for detecting convexity in the local neighborhood of a
node on the sub-grid. We limited ourselves to testing
for convexity in nine of the possible planes which can
be defined in a 3D grid and which form themselves a
regular rectangular 2D grid. The filters have the advan-
tage that unwanted aliasing is not possible.

Two passes are needed: a first one for detecting con-
vex diagonal edges and a second one for detecting con-
vex right edges. Convex diagonal edges are detected
with four filters; see the first two lines in Figure 7. The
filters are asymmetrical with respect to the object and
background, because the a priori topology corresponds
to (6,18)-connectivity (recall Section 3.1). In the fil-
ters to the left the background is convex to the top and
the object concave to the bottom. In the filters to the
right the object is convex to the top and the background
concave to the bottom.

Figure 7: Feature detectors

Convex right edges are detected with four filters; see
the third line of Figure 7. In the first filter the back-
ground is convex to the top-right and the object concave
to the bottom-left. In the second, third and fourth filter
the object is convex to the top-right and the background
concave to the bottom-left. The first two filters in the
third line are symmetrical with respect to the object and
background: the object is 6-connected in the first filter
and the background is 6-connected in the second fil-
ter. However, because the a priori topology is (6,18)-
connectivity, two other filters are possible in which the
background is 18-connected. In these filters, the gray
nodes may not be black and form a diagonal edge with
the black node in the middle, because then preference is
given to the black diagonals (as detected with the filters
for diagonal edges) and, consequently, the black node
in the middle can not be a convex right edge.

After detecting convex diagonal and right edges, we
use the following strategy for determining convex diag-
onal and right corners. Nodes which have been labeled
as a convex right edge in three different faces of a single
cell are labeled as convex right corners. Nodes which
have been labeled as a convex diagonal edge in three
different directions in the same cell are labeled as con-
vex diagonal corners. Other combinations of convex
right and diagonal edges are possible in a corner con-
figuration, but we limit ourselves to these two cases.

In practice, we only store labels at convex nodes
(black or white). The concavities are then represented
by their convex counterparts. This makes the filters lo-
cally applicable in the 3×3×3 neighborhood of a node.

4.2 Convexity

Object convexity is achieved by modifying the sub-grid
construction algorithm such that the nodes on the sub-
grid which correspond to convex black edges and cor-
ners are swapped from the background to the object.
This is done by interpolating along convex diagonal
edges and extrapolating at convex right edges and con-
vex diagonal and right corners. Since extrapolation is
only permitted if the topology remains unchanged, we
use topology preservation masks, in order to guarantee
that separate black 6-components cannot get connected
and connected white 18-components cannot get sepa-
rated.

For sub-cells with interpolated black diagonal edges
or with extrapolated black diagonal corners, the object
triangulation is done with the OP surface model and not
with the BP model. The OP model yields convex tri-
angulations for all configurations with black diagonal
edges and corners. Mixing both models is allowed be-
cause the closed paths which are defined by the surface
triangulations in all configurations are always equal in
the BP and the OP surface model [6].

4.3 Concavity

Starting from the refined representation on the sub-grid
of the object (black), the background (white), and the
labeled white nodes (labels indicate the directions in
which the background is convex), we can refine the
simplified surface model as follows: at a concave right
black edge, i.e. a convex right white edge, do not gener-
ate the standard oblique patch but a sharp one by forc-
ing the surface patch into the object. Figure 8 illus-
trates the idea. A similar line of reasoning holds for
concave black (diagonal or right) corners, i.e. convex
white corners. For each configuration in the simplified
surface model different surface patches are possible de-
pending on the labels of the white nodes, i.e. on the
directions in which the background is convex. If we or-
der all cases systematically we come to the lut depicted
in Color plate 3.
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Figure 8: At a concave edge node in DMC sub-space
(top figure) we want to force the triangulation inwards
the concavity to (0,0,0), i.e. build it not on the straight
18-path between a and b but on the hooked 6-path be-
tween a and b via (0,0,0) (depicted in red). If there
is no concavity detected in the yz-plane for the edge
node at (0,0,0), the triangulation in the two sub-cells
will not be refined in the respective yz-quadrant and
the blue area will remain inside the triangulated object
volume (in this case the simplified surface model is ap-
plied without any changes). If a concavity is detected,
the triangulation in each of the two sub-cells will be re-
fined in the respective yz-quadrant and the blue area
will be outside the object and the object volume will,
depending on the settings in the sub-cells, decrease
(in this case a refined surface model must be applied;
see Color plate 3). The triangulation at an edge node
can be made concave without altering the closed path
in the two sub-cells which are fixed to the edge node

We can prove that the surfaces created by this refined
surface model are topologically equivalent to the ones
created by the simplified surface model. The proof con-
sists of two parts. First, we prove that for each sur-
face refinement, the closed path remains equal to that
of the original surface. Color plate 3 shows that this
is indeed the case. Thus, no gaps can occur and the
topology is identical. Second, we prove that the out-
put surface remains manifold. For the gray patches in
Color plate 3 this holds because (due to the sub-grid
construction) edge nodes on different sides of an ob-
ject are always separated by two sub-cells in DMC sub-
space. For the colored patches in Color plate 3 this does
not hold, but for these patches we can prove that they
can be removed from the refined surface model. See
again Figure 8. When we regard the interface between
two sub-cells, the blue triangle can always be removed
without altering the closed path of the triangulation in
the two cells. Thus, we can replace the lut of Color
plate 3 by another lut in which all colored triangles are
removed. This is the final surface model which can be
applied in DMC sub-space in order to preserve concave
right object edges and concave object corners.

5 RESULTS

Figures 9, 10, 11 and 12 show output surfaces gener-
ated by detecting the different types of edges and cor-
ners for various objects. The objects were grouped into
three different classes: sharp objects with salient fea-
tures (Figures 9 and 10), thin objects with parts which
are only one voxel thick (Figure 11) and an object with
diagonal edges and corners (Figure 12). In the displays,
we note that each vertex corresponds to one node of the
sub-grid and that, for clarity, we did not pack together
any coplanar patches.

Figure 9: From top to bottom: original surface in DMC
sub-space according to standard DMC; surface gen-
erated with the OP surface model at convex diagonal
edges and corners; surface generated with the refined
BP surface model at concave edges and corners

The surfaces at the top were obtained by applying
the BP model at the sub-grid, without doing any feature
detection. These surfaces are in agreement with those
generated by the standard DMC method. The second
rows show the surfaces when we do not always apply
the BP model, but also the OP model at detected con-
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Figure 10: From top to bottom: original surface in DMC
sub-space according to standard DMC; surface gen-
erated with the OP surface model at convex diagonal
edges and corners; surface generated with the refined
BP surface model at concave edges and corners

vex diagonal object edges and corners. The third rows
show the surfaces when we also detect concave edges
and corners and apply the refined BP model.

The figures show that the methods always create
manifold output surfaces, also for the thin objects in
Figure 11. Examples of the preservation of convex right
edges and convex right corners can be seen in all fig-
ures. Examples of the preservation of concave right
edges can be seen in Figures 9, 10 and 11. Note that for
the first object in Figure 11 concave right edges are vis-
ible, but not in the middle where the concave right edge
which comes from the bottom of the object ends. Here,
the concavity could not be detected because there are
only four black nodes which lie in the horizontal plane
with the white node (this situation can be ambiguously
interpreted as a concave edge or as an object slope) and
the triangulation is accordingly adapted. Examples of
the preservation of concave right corners can be seen in
Figure 11. Examples of the preservation of convex di-
agonal edges can be seen in Figures 9, 10 and 12. Note
that also for the second object in Figure 9 a convex di-
agonal edge was detected. Also note, by comparing the
output surfaces at diagonal edges with the original sur-
faces in the top rows, that the aliasing at the edges has
completely disappeared. Examples of the preservation

Figure 11: From top to bottom: original surface in DMC
sub-space according to standard DMC; surface gen-
erated with the OP surface model at convex diagonal
edges and corners; surface generated with the refined
BP surface model at concave edges and corners

of a concave and a convex diagonal corner can be seen
in Figure 12. At the convex diagonal corner, the two
6-components of the object are connected to form the
sharp point.

6 DISCUSSION
In this paper it has been shown that we can simulate
DMC surfaces by applying a simplified surface model
(the BP model) in DMC sub-space and can: (A) explic-
itly represent convex right and diagonal edges and cor-
ners on the sub-grid by using an extended sub-grid con-
struction algorithm, (B) derive a refined surface model
for concave right edges and corners and concave diag-
onal corners, and (C) deviate from (6,18)-connectivity
and the BP model and locally use (18,6)-connectivity
and the OP model to represent convex diagonal edges
and corners. The advantage of working in DMC sub-
space is that there is room to build surfaces (oblique
or sharp) which are guaranteed to be manifold for any
input data.

In practice, when working locally on a cell-by-cell
basis, it is not needed to store the entire high-resolution
data grid of size (2x−1)×(2y−1)×(2z−1). Also, be-
cause the original DMC lut is computationally cheaper,
this table should be run when there are no features
whatsoever in a cell. Only in the case that a feature
is present, the cell should be opened up into its eight
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Figure 12: Original surface in DMC sub-space accord-
ing to standard DMC (top) and surface generated with
our method (bottom)

sub-cells. After building the sub-grid for the cell, the
sub-cells are mapped with the BP model in the case of
sub-cells without features and with the refined BP or
OP model in the case of sub-cells with features.

Another important issue is the number of output tri-
angles for an object, as this is a determinant factor for
the fast rendering of surface models. The authors of
the DMC algorithm show in a more recent paper [10]
that the number of generated triangles can be optimized
by using a pyramid structure in which all coplanar tri-
angles are packed into single output polygons. There-
fore, the main focus of this paper does not have to lie on
minimizing triangle counts. In fact, as the sharpness of
the object and the object topology is improved by our
method, the number of output polygons will decrease,
because oblique polygons at rounded edges and corners
and incorrect polygons at aliased diagonal object edges
will all be adapted and included into the relevant poly-
gons which determine the true shape of an object. This
can be illustrated by the very simple example of a cube
which is aligned with the 3D grid. With our method

the output surface will consist of six polygons, one for
each face of the cube, without the incorrect polygons
which are normally generated at the eight corners and
the twelve edges of the cube.

In the future we will look at application of the frame-
work for isosurfacing grayvalue data. Interpolated iso-
surfaces can be built by positioning nodes in DMC
sub-space, not in the middle between node pairs, but,
depending on the grayvalues which correspond to a
node pair, along the straight trajectory between the
nodes. Node pairs need not always correspond to two
6-neighbors (as in standard MC), but can also corre-
spond, for right object edges, to two 18-neighbors, or,
for object corners and for diagonal object edges, to two
26-neighbors. Nodes can be positioned along the en-
tire trajectories without losing the guarantee of surface
manifoldness.
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