GEOMETRIC SIMPLIFICATION FOR
EFFICIENT OCCLUSION CULLING IN
URBAN SCENES

Rick Germs & Frederik W. Jansen
Computer Graphics & CAD/CAM Group
Faculty of Information Technology & Systems
Delft University of Technology, The Netherlands
e-mail: {h.m.l.germs|f.w.jansen}@its.tudelft.nl

ABSTRACT
Most occlusion culling algorithms select a subset of suitable occluder planes or geometries to exclude invisible objects from further
visualization processing. Preferably these occluders are large and simple. For complex scenes it is worthwhile to generate virtual
occluders to replace complex occluder geometries by simple polygonal structures. In urban scenes, the facade of buildings
comprises most of the occlusion potential. In this paper we present an algorithm to extract simplified facades from complex building
models, exploiting the fact that, in most cases, buildings have a 2.5D structure.

Keywords: walkthrough visualization, occlusion culling, virtual occluders, geometric simplification.

1. INTRODUCTION

Interactive visualization of large 3D polygonal
models is a task that is still beyond the capacity of
today’s computer systems. Even though computers
will be developed that are faster and more efficient,
there will always be the need to visualize larger 3D
models. Successful ways to speed up visualization
aim at lowering the polygon-count at each frame,
thereby reducing graphics hardware load. Viewing
frustum culling, backface culling and level of detail
switching are techniques that are widely used to
achieve this. Viewing frustum culling is the removal
of polygons that are not in the field of view. With
backface culling, all polygons that are on the back of
an object, and therefore cannot be seen, are
removed. Level of detail switching replaces a
complex, detailed object with a model consisting of
less polygons when it is expected that details cannot
be seen in the final image (e.g. when the object is far
away from the viewpoint). All these techniques
address the problem of removing polygons that do
not contribute to the final image. Another approach,
which recently attracts a lot of attention, is occlusion
culling. Occlusion culling is the technique of
identifying and removing polygons that are hidden
behind (“occluded by”) other objects in a scene. It is,
in fact, a hidden surface removal algorithm that pre-
computes visibility of polygons before rendering, to
reduce the load on the image space hidden surface
removal done in graphics hardware. Although in
theory occlusion culling can remove a large number

of invisible polygons, the computation cost is often
high. This can be explained by the fact that it is not
trivial to efficiently perform the visibility test needed
to determine which surfaces are completely
occluded by other surfaces. Most existing algorithms
select a limited number of surfaces, which are
suitable as occluders for the other surfaces in the
scene. Preferably, these occluders are large, so they
have the potential of occluding a large part of the
scene. Unfortunately, most scenes do not contain
enough large occluders to efficiently perform
occlusion culling. Therefore, it may be advantageous
to find virtual occluders [Law99], e.g. by
simplifying the geometry of occluding objects, and
to replace sets of small occluders with one large
polygon. In particular for urban scenes, the front
faces of houses and rows of buildings are crucial for
efficient culling of the city parts that are hidden
behind them.

This paper presents an algorithm to generate
simplified, occlusion preserving, virtual occluders in
urban scenes. These virtual occluders are generated
using footprints, which represent levels in a 3D
model. Using several footprints for a given model, a
simplified representation can be generated, which
we call a facade. Facades can also be used as a low-
detail model in level of detail switching.

The paper is organized as follows. In chapter 2, we
take a look at some previous work in the fields of
occlusion culling and occlusion preserving
geometric simplification. We present our facade

algorithm in chapter 3. Implementation and results
are discussed in chapter 4, and chapter 5 concludes
the paper.

2. PREVIOUS WORK

In the last decade, a lot of work has been done in the
field of occlusion culling and geometric
simplification. Much less research has been focussed
on the construction of occlusion preserving
geometric simplification. In this chapter, we first
discuss some of the recently developed occlusion
culling algorithms, and show how occlusion
preserving geometric simplification can be used to
improve their efficiency. Next, we look at the
occlusion preserving simplification = method
proposed by [Law99].

2.1 Occlusion Culling

In 3D scene rendering, for example in urban walk-
through visualization, many objects (e.g. buildings)
are hidden behind other objects for a given viewing
position. Although these objects are invisible, the
rendering algorithm still has to process them, which
can be seen as a waste of computation effort.
Occlusion Culling is a technique that tries to identify
hidden objects or occludees. The occludees can then
be excluded from the rendering process. In occlusion
culling, two basic approaches can be distinguished;
image space and object space methods, indicating
the space in which the occlusion culling calculations
take place. Both approaches use a set of nearby,
visible objects called occluders to perform their
calculations. Image space methods usually make use
of graphics hardware to render an occluder.
Occludees are identified through image space
overlap and Z-buffer tests. With object space
methods, the edges of an occluder (e.g. a polygon)
are used to generate a number of planes, which
indicate the volume that is occluded. Potential
occludees that are completely contained by the
volume can be culled away.

In the rest of this section, we will discuss some of
the occlusion culling algorithms available today.

Greene's hierarchical Z-buffer algorithm [Greene93]
is based on an image space quadtree (z-pyramid), in
which the farthest z-value for a corresponding
rectangular part of the image is stored at each node.
Objects in the scene are grouped in an octree. The z-
pyramid is generated by rendering objects in octree
cells that are likely to be visible or were tagged
visible in the previous animation frame. The
visibility of the other objects is tested by rendering
the forward facing planes of the octree cells
bounding the objects. Note that the algorithm does
not require selection of suitable (i.e. large)
occluders.

The hierarchical occlusion map (HOM) introduced
in [Zhang97] also performs its visibility test in
image space. Potentially visible surfaces are
rendered in an image map, from which a hierarchy
of occlusion maps (image pyramids) is generated.
The hierarchical occlusion maps are used as
occluders for the surfaces that are likely to be hidden
(occludees). For each possible occludee, a bounding
rectangle overlap test is performed with the pixels of
the occlusion maps. This, together with a simple
occluder/occludee depth comparison, comprises the
run-time visibility test. The number of occluders
that can be used each frame is limited. Replacing
occluders with a simplified, occlusion preserving
geometry would allow more occluders to be taken
into account each frame, possibly resulting in more
objects being culled.

Coorg and Teller [Coorg97] propose an object space
algorithm that selects a small number of convex
polygons as occluders each frame. The occluder
selection mechanism selects polygons that are
thought to have a high occlusion potential, indicated
by the polygon’s solid angle from the viewpoint.
The scene is subdivided using a kD-tree, where the
nodes of the tree are candidate occludees. As the tree
is traversed, each node is subject to the visibility
test, which is performed in object space. Visibility is
determined by the use of supporting and separating
planes, which are generated for each edge of an
occluder polygon. A possible occludee has to be
tested to each of the planes to determine its
visibility. So, the occluder/occludee visibility test
will be more efficient, if scene objects are simplified
into large occlusion polygons with a low edge count.

The algorithm developed by Wonka [Wonka99] is
aimed at walk-through visualization in 2.5D
environments, such as urban scenes. It uses two
regular (2D) grids, a scene grid and an occluder grid,
which can be of different resolution. The occluder
grid is used to store the occluder polygons, which
are selected in a pre-processing step. Effectively,
suitable occluder polygons are large, convex and
must be perpendicular to the ground plane. For every
top edge of an occluder polygon, a so-called
occluder shadow is rendered in a hardware cull map.
The occluder shadow is a plane through the
viewpoint and an occluder edge, covering all
possible occludees behind the occluder polygon, as
seen from the viewpoint. Each pixel in the cull map
corresponds with a cell in the scene grid. The
visibility test consists of a comparison of the z-
values of the objects in a scene grid cell and the z-
value stored in the cull map. For this test, standard
graphics hardware can be used, which allows run-
time occlusion culling for real-time walkthrough
visualization. For real-time performance, only a
limited number of suitable occluder polygons can be
selected during the pre-processing step. Here, a

geometric simplification algorithm optimizing
occlusion culling should generate large, convex
polygons, which are perpendicular to the ground
plane and have a small number of occluder edges.
The occlusion culling methods described above
perform the visibility test in run-time, but there also
exist algorithms that pre-compute visibility for every
cell in an object space subdivision data structure. For
example, in [Saona99], pre-processed lists of visible
bounding boxes (containing groups of objects) are
stored at the leaf nodes of an octree. The run-time
algorithm consists of selecting the correct list and
rendering the objects in the list. In [Zhang97],
visibility pre-processing can optionally be used to
improve the dynamic occluder selection algorithm.
The run-time algorithm proposed in [Wonka99] can
also be applied in a visibility pre-processing step
[Wonka00], where point sampling is used to
determine visibility for parts of the scene.

2.2 Occlusion Preserving Geometric
Simplification

In [Law99], Law & Tan replace complex occluder
geometry by simplified virtual occluders. Virtual
occluders are created from the lowest level node in
the level-of-detail hierarchy of an occluder object.
To ensure that the virtual occluder does not occlude
other objects than the original model, an algorithm
called edge error correction is applied. Edge error
correction moves all edges of a simplified model
inside the boundary of the original model
individually. Although this does not always result in
a valid geometry (the edges of a polygon are not
always coplanar), it can be very well be used as an
occluder (e.g. with the visibility tests proposed in
[Coorg97]). The edges are moved individually, to
preserve most of the original model’s occlusion
potential. Next to this virtual occluder algorithm,
Law & Tan also implement an occlusion culling
scheme, where lists of occludees for each cell of an
object space subdivision are created in a pre-
processing step.

Looking only at the occluder creation part of the
algorithm, one of the advantages is that it can use
several existing (and extensively tested) geometric
simplification algorithms for creating occluders with
few, but large polygons for any (convex or non-
convex) geometry. Second, with edge error
correction, the virtual occluders can maintain a very
high occlusion potential. But, because a virtual
occluder may be an invalid geometry, it can only be
used for visibility processing. So, it must always
exist next to a LOD hierarchy, instead of being part
of the hierarchy. Although the virtual occluders are
highly occlusion preserving, there is no control over
the size and orientation of individual polygons
(unless the simplification algorithm used can

provide this). This makes it less suitable for
application in run-time occlusion culling algorithms
such as [Wonka99].

3. FACADE: A GEOMETRIC
SIMPLIFICATION FOR EFFICIENT
OCCLUSION CULLING

This section introduces a new approach for
optimizing 3D polygonal models into fast occluder
geometries. Generally speaking, most object space
and some image space occlusion culling algorithms
will benefit from simplification of complex
occluders into simple geometries consisting of large,
convex polygons with a low vertex count. At the
same time, we have to preserve the contours, and
therefore the occlusion potential, of the original
model. Apart from that, it may be advantageous to
restrict the orientation and shape of the polygons
generated by the simplification algorithm to suit a
specific occlusion culling algorithm or application. It
may therefore be more efficient to use a special
purpose simplification, aimed specifically at urban
scenes.

The facade approach presented here is aimed at
simplifying geometric models of buildings for
occlusion culling in walkthrough visualization of
urban scenes.

3.1 Overview

Looking at an architectural model in urban walk-
through visualization, we can say that its “facade”
and generates most of the model’s occlusion
potential. Unfortunately, the geometry of an
architectural model, including its facade, is usually
very complex. We propose a geometric
simplification algorithm that generates an occlusion
preserving model consisting of only the simplified
facade of a building. We do this by exploiting the
fact that most parts of 3D architectural models have
a 2.5D type of structure. Most buildings can be seen
as a stacked number of blocks. A block can be
described by a 2D contour (a footprint) with an
associated height.

To identify the blocks that compose a building, we
must find parts of the geometry that have more or
less the same height. Looking along the vertical (Z)
axis of a building’s geometry, a number of levels
can be found, which we will refer to by the name Z-
levels. For each of the isolated Z-levels, we can
create a so-called footprint. A footprint can be
defined as the 2D projection of a 3D model on the
plane that represents the model’s ground surface
(Fig. 1b). In conventional geographic information

(@)

systems (GIS), which usually work with 2D data
(maps), footprints of 3D objects (e.g. newly built
buildings) are regularly used to represent the contour
of the object on a map. Once we have generated the
footprints for each of the Z-levels of a building, we
can generate a 2.5D geometry, which we will call a
facade (Fig. 1c). The facade has to be completely
contained by the original model, to ensure that it will
occlude only the set of objects occluded by the
original model.

So, the procedure of generating facades for
occlusion culling is:

1. find the Z-levels of a building (Z-level
identification),

2. create a footprint for each of the Z-levels,

3. generate a facade from the set of footprints and
Z-levels.

We will elaborate the identification of Z-levels in
section 3.2. In section 3.3, we look at the process of
creating a 2D footprint. Last, in section 3.4, the
creation of a facade using a set of footprints is
explained.

3.2 Z-level Identification

Z-level identification is the process of extracting the
most significant Z components of the basic 2.5D
structure of a 3D architectural model. This (basic
2.5D) structure is mainly characterized by the non-
vertical sections of the model’s boundary (e.g. roofs,
balconies). In this paper, we will look at the case of
identifying Z-levels in building models that are
completely 2.5D (i.e. having no overhanging parts,
like a balcony). The identification of the Z-levels of
a model globally consists of two steps:

1. Creating the set of polygons that form the non-
vertical sections of the model’s boundary (i.e.
with a face normal pointing upwards). All
vertically oriented polygons are discarded.

(©)
Figure 1: A 3D model of a building (a), its footprint (b) and facade (c).

2. Clustering this set into Z-levels, where all
polygons in a Z-level are at the same height
within a tolerance T.

The number of Z-levels that is generated can be
controlled indirectly, using the tolerance Tz. Using a

low T,, the number of levels will increase, and so
will the occlusion potential of the resulting facade.
But, using more Z-levels also means that the facade
will consist of more (and smaller) polygons. By
increasing Tz, we can lower the number of Z-levels,
but then we might lose too much occlusion potential.
An adequate solution to the problem would have to
find the optimal balance between facade polygon
count and occlusion potential. Computing such an
optimal solution would require a sophisticated
algorithm. For the moment, we intend to use a sub-
optimal, but quicker method. The main idea of this
method is that some Z-levels add more to the
occlusion potential of the facade than others will.
For example, a Z-level consisting of only a few
small polygons will not influence the occlusion
potential of the facade much, while still adding to
the facade’s polygon count. The method works as
follows:

1. Cluster the set of polygons into Z-levels using a
relatively low Tz, such that extra Z-levels are
generated.

2. Calculate the occlusion benefit for a Z-level.

3. Merge Z-levels, or delete them on the basis of
their occlusion benefit.

The occlusion benefit of a Z-level can be described
as a measure for the occlusion potential that the level
adds to the occlusion potential of a subsequent
(lower) level. If the level does not generate much
additional occlusion potential, it can be deleted.
Otherwise, the algorithm can either decide to keep
the two separate levels, or merge them on the basis
of their mutual occlusion benefit and distance AZ.

@

(b)

Figure 2: The metric used for the occlusion benefit of a Z-level L,, compared to L (a), is based on the
surface area of the non-intersecting parts of the facade geometries defined by the Z-levels (b).

If both occlusion benefit and AZ are high, both
levels are kept. If only the occlusion benefit is high
and AZ is considered small, the Z-levels are merged.
The occlusion benefit of one Z-level compared to
another Z-level can be calculated from the non-
intersecting parts of the facade geometries generated
from the levels (Fig. 2). This can easily be seen from
the fact that these parts may occlude different
objects, whereas the intersecting parts will occlude
the same objects. So, a metric indicating the
occlusion benefit of one Z-level compared to another
would have to be related to the non-intersecting
parts.

Finding a simple, but suitable metric for the
occlusion benefit (or occlusion potential) is not
straightforward, because a 3D object will have a
different occlusion effect from different viewpoints.
The solid angle of an object is a good metric for its
occlusion potential [Coorg97], but it is bound to the
viewpoint. Here, we want to find a metric that is
independent of the viewpoint. A simple, but
adequate metric would be the area of an object’s
visible surface™. For convex objects, we can state
that a larger visible surface area generally generates
a higher overall occlusion potential. With the overall
occlusion potential, we want to indicate the quality
of an object as an occluder, independent of the
viewpoint.

Now, we apply this metric to refine the choice of Z-
levels. For two Z-levels L; and L, (Fig. 3),
this is done as follows:

1. Intersect L; with L,, resulting in intersecting
and non-intersecting parts for L, (Fig. 3b)

2. Determine the (2D) convex hull for the
intersecting and non-intersecting parts of L,
and the convex hull of L; (Fig. 3c). As
explained before, this is done because concave
parts enlarge the visible surface area, but do not
contribute to the occlusion potential of the Z-
level.

! We must use the area of the convex hull of the object to be
exact. This is because concave parts will enlarge the surface area
of the object, but they do not contribute to its occlusion potential.
The convex hull of a fagade can be calculated by extruding the
convex hull of the Z-level footprints that define the fagade.

3. Calculate the perimeter P, of the intersecting
part(s), the perimeter P, of the non-intersecting
part(s) of the convex hull of L, and the
perimeter Py of the convex hull of L; (Fig. 3c¢).

4. If Z, is the height of L;, and Z, is the height of
L,, we can calculate the surface area (or
occlusion benefit B, ;) that L, adds to the facade
defined by L; (Fig. 3e):

By 1 =2, Py +(Ly-Zy) - P

5. To decide whether to keep both levels, merge
them or delete the higher level L,, we compare
the occlusion benefit B,; with the surface area
of the facade defined by (the convex hull of) L,
using a threshold value Tg. Now, Z-level L, is
said to add significantly to the occlusion
potential of Z-level Ly, if:

BZ,I > TB . Al: where Al = Pl . Zl

We can extend the basic method, e.g. by accounting
for the number of facade polygons generated by the
individual levels or by introducing weights of
importance to preserve lower levels. The first will
improve the overall occlusion potential of the facade
against the cost of some extra polygons. By
preserving lower levels, we can exploit the fact that
these levels occlude more objects in urban
walkthrough visualization.

3.3 Generating a footprint

In this section, we explain the method we used to
create a footprint of a 3D model for use with
occlusion culling. Since the input required by the
footprint algorithm is just a set of polygons, we can
apply the algorithm to the polygons grouped in a Z-
level without any adjustments.

If we assume that we want the footprint to be a
projection onto the XY-plane, then we first select all
polygons of the model that have a normal N with
|N,| > €. We then have a set of upward or downward
oriented polygons. The edges of these polygons are
then inserted into a quadtree. The quadtree is used to
localize intersection calculations. The footprint
algorithm starts by selecting the edge closest to one

@ (b)

®

Figure 3: Occlusion benefit calculation. The two Z-levels L; and L, (a), (b) are intersected in 2D (c),
and then the perimeter of the convex hull of the resulting parts is determined (d). These parts are
extruded (e), (f) showing the surface area (vertical faces only) that defines the occlusion benefit.

Note: in (d) and (f), an exploded view is used for clarity.

of the corner points of the quadtree border. It then
tracks the contour of the projected 3D model by
intersecting edges stored in the quadtree cells,
traversing the tree along the contour. The algorithm
stops when there are no edges left outside the contour,
which we now call a footprint. A footprint is allowed
to have multiple (non-intersecting) parts.

Footprints are generated to create a facade, which has
to be an efficient occluder (i.e. consisting of few but
large polygons). Each vertex in a footprint accounts
for two triangles (or one quad) in a facade (section
3.4), and thus, footprint simplification will produce
more efficient occluders. There are, however, two
basic rules that must be followed in the simplification
process:

1) the simplified footprint must be completely
contained by the original footprint. Only then, we
can assume that the facade generated from the
footprint does not occlude other objects than the
original model.

2) the occlusion potential of the facade generated
from the footprint must be preserved as much as
possible.

E
/7
/
Ve —_—— 7 J—

(b)
Figure 4: Footprint simplification: redundant
vertex (a) and edge removal (b).

Footprints are simplified by removing more or less
“redundant” vertices and edges (Fig. 4). A vertex V
and its connected edges are removed if the lines
through these edges are at an angle o < € (Fig. 4a, 4b).
This satisfied rule no. 1 for both redundant vertex and
edge removal. As long as o is small, removing
redundant vertices does not effect the occlusion
potential much (satisfying rule no. 2). But, for
redundant edge removal, we must use a constraint to
preserve occlusion potential. The constraint is that we
only remove an edge if the distance between V and the
center-point of the edge E is below some threshold
distance. (Note: this constraint can also be applied on
redundant vertex removal. This is not needed
however, because using a small o already guarantees a
small loss in occlusion potential.)

3.4 Generating a Facade for Optimized Occlusion
Culling

We have now shown how we extract a number of Z-
levels from a 3D model of a building, and how we
create a 2D footprint from the polygons that comprise
a Z-level. The last step is to create a facade geometry
from the (simplified) footprints.

For the moment, we intend to support only 2.5D
objects (buildings without overhanging parts). A
facade is created by extruding each of the input
footprints from their Z-level to the groundplane of the
model (Fig. 5a, 5b).

There are two basic facade types, the open and the
closed facade. An open facade is a set of 4-vertex
polygons (called walls), that are all perpendicular to
the groundplane (Fig. 5b). This type of facade can be
used as an occluder, or, when textured, as a low-level
of detail model in (urban) walkthrough visualization.
A closed facade consists of slightly more polygons,

because it also has a “roof”, consisting of triangles
(Fig 5¢). When textured, it is suitable as a low level-
of-detail representation in a fly-over visualization of
an urban scene.

For occlusion culling purposes, the open, wall-
oriented facade will probably perform best (Fig. 5d).
For this type of facade, each of the walls of the facade
can have its own height. This of course increases the
occlusion potential of the facade, against the cost of
storing a Z-coordinate with each wall. To insure that
the object does not occlude other objects than the
original model, the height of the wall is set to the
minimum Z found along the edge defining the wall
(which is always equal to, or higher than the Z of the
entire footprint).

Groundplang

(c) (d)
Figure 5: Facade creation. The Z-level footprints

(a) can be used to create an open (b), closed (c) or
“wall-oriented” facade (d).

4. IMPLEMENTATION AND RESULTS

We tested the algorithm on two building models. For
the purpose of these tests, the complexity of the
models was low, and the models did not have any
overhanging parts, or holes. Furthermore, no footprint
simplification was applied, and we only tested “open”
facades. The test results shown in Table 1 should
therefore be regarded as just an indication of what can
be expected from the algorithm. The reason for this is,
that at this time, the implementation is not robust
enough to handle every input model.

A facade can be tested by determining its quality as an
occluder. This quality is reflected by the following
properties:

1. the occlusion preserving quality of the facade
compared to the original model,

2. the efficiency with which the facade can be used
as an occluder, compared to the original model.

4.1 Occlusion preserving quality

Since the solid angle is a suitable metric for the
occlusion potential [Coorg97], we can measure the

occlusion preserving quality of a facade by sampling
its solid angle from a number of viewpoints, and then
repeat the procedure with the original model. The
average solid angle of both samples can then be
compared. The final occlusion preserving indicator
can then be a percentage showing the overall
occlusion potential of the facade compared to the
original model. We can do this, because the test
models did not have any overhanging parts or holes,
and therefore, a facade will always be completely
contained by this model.

In the actual tests, we rendered a series of binary
images of the original model and the facade, showing
a black object on a white background. By counting the
number of black pixels, we got an indication of the
solid angle, or rather the occlusion potential of the
object for each of the chosen viewpoints. The
viewpoints were uniformly distributed along the edge
of a horizontal circle, located at half the height of the
original model. The radius of the circle was set to a
fixed value, such that the entire model would be
visible in each of the images. We can justify this
approach, because of the fact that the use of facades as
an occluder is mainly in walkthrough visualization,
and the models we considered did not have any
overhanging parts or holes. To measure the occlusion
preserving quality of the facade, we need to get an
idea of the overall occlusion potential of both the
original model O,,040, and the facade Ofzeaqe, and then
compare these values. For this, we first find the
maximum occlusion potential of the original model as
a reference value (we do not want to determine the
quality of the model as an occluder, we want to
measure the occlusion preserving quality of the
facade). We find Oy,p0e and Oyepqe by comparing the
sampled occlusion potential values with this
maximum value. Finally, the occlusion preserving
quality is given as a percentage, by -calculating
Ofucade! Omoder * 100%. In both test cases, the overall
occlusion preserving quality of the facade (which is an
open facade) is between 80% and 90%, which is
acceptable, considering the increase in occluder
efficiency (Table 1).

4.2 Occluder efficiency

The efficiency with which a facade can be used as an
occluder is related to the number of polygons of the
facade, and the average area of these polygons. It is
clear that an object with many, small polygons will be
a less efficient occluder than an equally sized object
consisting of only a few, very large polygons. In an
ideal test case, the original model is part of the first
category of objects, and the facade is part of the
second group. It is clear from Table 1 and Fig. 6, that
the facade is a much more efficient occluder geometry
in both test cases.

Original model Facade
Name Polygon count | Average poly area Polygon count | Average poly area Occlusion Preserving Quality
House 714 36.0 2918.5 89.2%
Station 1730 2.02 461.4 84.4%

Table 1: Results showing the polygon count, the gain in average polygon area and the occlusion preserving quality for the two
test cases. The average polygon area and polygon count values give an indication of the efficiency of the facade as an occluder.

(@) (b)

Figure 6: The facade generated for the “House” (a)
and (c), and the “Station” model (b) and (d). In (a)
and (b), a wireframe rendering of the original
models is shown.

5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

Although the presented test results are preliminary,
we can draw some conclusions on the potential of

the facade approach. Our main goal was to create a
simplified geometry that would enable more

REFERENCES

[Coorg97]

efficient occlusion culling. This means that a facade
has to be a geometry consisting of much less
polygons with a relatively large area, compared to
the original model. Also, the facade has to be a
conservative occluder, preserving most of the
occlusion potential of the original model. Looking at
the (preliminary) results presented in this paper, we
conclude that the facade approach will produce
promising results, especially when we incorporate
footprint simplification and more occlusion
preserving features (e.g. by using the wall-oriented
facade) into the algorithm.

5.2 Future Work

The first topic we will look at is the robustness of
the footprint tracking algorithm. The problems in
that area are probably due to floating point
inaccuracies. Next, the algorithm must be extended
to handle building models with overhanging parts.
This will be quite a complex task, since we aim to be
able to support any input model, without any
knowledge about the model structure.

Finally, we will test the run-time efficiency of the
facade representation, within an occlusion culling
algorithm. Since the facade algorithm is aimed at
simplifying building models, we will use an
occlusion culling scheme particularly aimed at urban
walkthrough visualization, which is based on the
urban environment occlusion culling algorithm
proposed by [Wonka99]. Since this algorithm is
specifically designed to exploit the 2.5D character of
urban scenes, we expect that it will show the full
potential of facade simplification.

Coorg, S. and Teller, S., Real-Time Occlusion Culling for Models with Large Occluders, Symposium

on Interactive 3D Graphics, pp. 83-90, 1997, ACM SIGGRAPH, ISBN 0-89791-884-3.

[Gotsman99]

Gotsman, C. and Sudarsky O. and Fayman, J., Optimized occlusion culling using five-dimensional

subdivision, Computers & Graphics, 23(5), pp. 645-654, 1999, Pergamon Press. ISSN 0097-8493.

[Greene93]

Greene, N. and Kass, M., Hierarchical Z-Buffer Visibility, Proceedings of SIGGRAPH 93, Computer

Graphics Proceedings, Annual Conference Series, pp. 231-240, 1993, ISBN 0-201-58889-7.

[Law99]

Law, F. and Tan, T., Preprocessing Occlusion for Real-Time Selective Refinement, Symposium on

Interactive 3D Graphics, pp. 47-54, 1999, ACM SIGGRAPH, ISBN 1-58113-082-1.

[Saona99]

Saona-Vasquez, C. and Navazo, I. and Brunet, P., The visibility octree: a data structure for 3D

navigation, Computers & Graphics, 23(5), pp.635-643, 1999, Pergamon Press, ISSN 0097-8493.

[Wonka99]

Wonka, P. and Schmalstieg, D., Occluder Shadows for Fast Walkthroughs of Urban Environments,

Computer Graphics Forum, 18(3), pp. 51-60, 1999, Blackwell Publishers, ISSN 1067-7055.

[Wonka00]

Wonka, P. and Wimmer, M. and Schmalstieg, D., Visibility Preprocessing with Occluder Fusion for

Urban Walkthroughs, Rendering Techniques 2000, pp. 71-82, Eurographics, ISBN 3-211-83535-0.

[Zhang97]

Zhang, H. and Manocha, D. and Hudson, T. and Hoff, K.. Visibility Culling Using Hierarchical

Occlusion Maps, Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, pp. 77-88, 1997, Addison Wesley, ISBN 0-89791-896-7.

	GEOMETRIC SIMPLIFICATION FOR EFFICIENT OCCLUSION CULLING IN URBAN SCENES
	
	
	
	
	
	
	ABSTRACT

	1

	1. INTRODUCTION

	2. PREVIOUS WORK
	
	2.1 Occlusion Culling
	2.2 Occlusion Preserving Geometric Simplification

	3. FACADE: A GEOMETRIC SIMPLIFICATION FOR EFFICIENT OCCLUSION CULLING
	3.1 Overview
	Figure 1: A 3D model of a building (a), its footprint (b) and facade (c).
	3.2 Z-level Identification
	Figure 2: The metric used for the occlusion benefit of a Z-level L2, compared to L1 (a), is based on the surface area of the non-intersecting parts of the facade geometries defined by the Z-levels (b).
	
	
	B2,1 = Z2 (P2-1 + (Z2 – Z1) (P1(2

	3.3 Generating a footprint
	3.4 Generating a Facade for Optimized Occlusion Culling

	4. IMPLEMENTATION AND RESULTS
	4.1 Occlusion preserving quality
	4.2 Occluder efficiency
	
	Original model
	
	
	
	Average poly area

	CONCLUSION AND FUTURE WORK
	Conclusion
	5.2 Future Work

	REFERENCES

