
1

Invited presentation 4th EG Workshop on Rendering, Paris, June 1993, p. 27-46.

Realism in Real Time?

Frederik W. Jansen, Delft University of Technology*

Alan Chalmers, University of Bristol**

Abstract
With the continuous improvement in ray tracing and radiosity algorithms, image synthesis
quality has reached the level of photo realism. However, efforts to achieve real-time
performances by implementing ray tracing and radiosity algorithms on parallel processors
and dedicated hardware have not been very successful so far. Increasing the number of
processors introduces a corresponding growth in inter-processor communication. Caching
could be effective to reduce communication, if sufficient coherence would be available in
subsequent data requests. Unfortunately, standard ray tracing and radiosity do not provide
enough coherence. In this paper we review the different parallel approaches and we try to
ascertain those issues that are crucial for further improvement. In particular, we will focus
on load and data management strategies that effect the amount of data coherence in ray
tracing, and on methods to improve ray and object coherence.
Keywords and phrases: rendering, ray tracing, radiosity, graphics hardware, parallel
processing, data coherence

1. Introduction
Over the last decade, computer graphics research has been very successful in achieving
two goals: real-time display and increased realism in display. Real-time display has been
accomplished by implementing the viewing pipeline of the projective depth-buffer hidden-
surface algorithm in dedicated hardware, and increased realism has been accomplished by
extending the traditional ray tracing algorithm to include also diffuse interreflection and
indirect specular reflection. Unfortunately, the combination of both goals, realism in real
time, is still waiting to be realised.
Since the introduction of the geometry engine (Clark 1982), the depth-buffer based dis-
play systems have shown a steady increase in performance, both in speed and quality.
Starting with a display rate of 30,000 polygons per second in the early eighties, current
systems are now able to display more than a million polygons per second, allowing dis-
play of reasonable complex scenes in real-time (Torborg 1987; Akeley and Jermoluk
1988; Kirk and Voorhies 1990). Although the depth-buffer algorithm, inherently a pro-
jective algorithm, is not able to handle optical effects such as shadows, highlights and
mirroring reflections in a natural way, several techniques have been developed to enhance
the realism by adding textures, anti-aliasing, motion-blur, depth-of-field, etc. (Heaberli and
Akeley 1991). Also diffuse interreflection, and area light sources have been incorporated
by adding a radiosity pre-processing that subdivides the scene into a mesh of small
surface patches and elements, and calculates the exchange of energy between these patches
to account for the diffuse interreflection between surfaces (Cohen and Greenberg 1985;

* Faculty of Technical Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, The
Netherlands. Email: fwj@duticg.twi.tudelft.nl
** Department of Computer Science, Queen's Building, University Walk, Bristol BS8
1TR, United Kingdom, Email: alan@compsci.bristol.ac.uk

2

Nishita and Nakamae 1985). Display of these elements makes it possible to walk through
interiors and still maintain a high-degree of shading accuracy (Baum and Winget 1990;
Baum et al. 1991).
The accurate representation of shading and shadow gradients is very much dependent on
the accuracy of the element mesh. A resolution too high will be too expensive while a
resolution too low will not adequately represent the shading gradients. Adaptive meshing
techniques have been developed to provide locally a higher resolution to accommodate
shading discontinuities (Cohen et al. 1986). Further improvements have been sought in
exact meshing techniques that align the boundaries of elements with shading discontinui-
ties (Campbell and Fussell 1990; Heckbert 1992; Lischinski et al. 1992). In this case,
however, it is inevitable that a priori knowledge about shading discontinuities is available,
obtained for instance from projecting surface contours onto these patches. This is a very
expensive and complex kind of (object-space-oriented) pre-processing, particularly if
curved surfaces are involved. Nevertheless, the pre-processing will be worthwhile if one
wants to display a scene in real time with depth-buffer based display hardware for use in
walk-through applications (Baum and Winget 1990). Thus, within the paradigm of depth-
buffer-based projective display of polygons a whole set of techniques has been developed
to increase realism without sacrificing real-time performance. True realism, however, will
still prove to be difficult to achieve with the projective approach because of the lack of
specular and mirroring reflections and of the limited accuracy of even the most advanced
exact meshing and interpolation technique.
The other display paradigm, ray tracing, has always been appreciated for its high-quality
rendering capabilities. The initial 'recursive' ray tracing algorithm (Whitted 1980) did
model effectively cast shadows and optical effects such as mirroring reflection and
transparancy. With stochastic ray tracing, the repertoire of optical effects was further
expanded to soft shadows, motion blur and depth-of-focus, and the image quality was
improved by anti-aliasing (Cook 1986; Dippé and Wold 1985; Lee et al. 1985; Mitchell
1987). The addition of Monte Carlo sampling techniques to capture also the indirect light
has even further increased the realism and accuracy of the illumination calculation (Kajiya
1986), as did improved reflection models (Cook and Torrance 1984) and texture filtering
(Heckbert 1986). A radiosity preprocessing has been introduced to ray tracing too
(Wallace et al. 1989; Sillion and Puech 1989) to account for the indirect diffuse reflection.
The image quality is here less dependent on the accuracy of the mesh because most
important shading and shadow continuities can be re-sampled during rendering, either for
specular reflection only (Sillion and Puech 1989), most important direct light (Shirley
1990; Chen et al. 1991; Kok and Jansen 1991) or for all direct and indirect light
(Rushmeier 1988; Chen et al. 1991). However, the more sampling is done, the more
computation times will tend to explode.
Efficiency improving techniques such as adaptive ray tracing (Painter and Sloan 1989)
and spatial subdivision techniques (Glassner 1989) are effective, but processing times for
complex scenes are still in the order of minutes. For that reason, ray tracing has always
been a popular subject for parallel processing and good results have been achieved
(Scherson and Caspary 1989; Green and Paddon 1989), but not in the sense that it has
brought ray tracing of complex scenes within reach of interactive display. The alternative
of designing special VLSI hardware, the popular route for the depth-buffer approach
mentioned above, has not been tried so much for ray tracing. The efforts of Kedem and
Ellis (1984, 1989) and Pulleyblank and Kapenga (1986, 1987) and the more recent
developments by Shen and Deprettere (1992) are the notable exceptions so far.
The major bottleneck in parallel processing appears to be the data communication between
processors. Communication can be reduced by use of caching. However, caching is only
effective when enough coherence is available in subsequent data requests (Green and

3

Paddon 1989). Unfortunately, standard ray tracing as such does not provide much cohe-
rence between subsequent ray intersection tasks. In this paper we will therefore review
different ray tracing algorithms and we will analyse how the amount of coherence can be
increased by adapting the order in which ray intersections are scheduled, and by elimi-
nating as much as possible ray intersections that will tend to destroy potential coherence.
The paper is structured as follows: In section 2, the requirements for realistic rendering are
summarised, the state-of-the-art in global illumination reviewed, and an outline of a family
of ray tracing algorithms with radiosity preprocessing is given. In section 3, the different
hardware and parallel processing approaches are discussed and the role of caching in
relieving the communication bottlenecks is emphasised. In section 4, several forms of
coherence are discussed and in section 5, techniques to improve data coherence in ray
tracing and a hybrid task scheduling strategy are proposed. In section 6, we discuss the
open issues.

2. Realism in computer graphics
Realism can only be achieved by combining sophisticated modelling and rendering tech-
niques, such as those for modelling curved surfaces, specifying procedural models,
applying texture mapping and filtering, light source models, local reflection models
(isotropic/anisotropic, diffuse/specular reflection, refraction, absorption, etc.) and global
reflection models (interreflection patterns between surfaces, simulation of soft shadows,
mirroring reflections and participating media). Although all these subjects are of equal
importance, global reflection (global illumination or inter-reflection) is currently consid-
ered to be most crucial, in particular in applications for architecture and interior design.
To give an indication of the complexity of the interreflection problem, some of the paths
travelled by the light leaving a light source before it reaches the eye are shown in figure 1.
The situation is simplified in the sense that surfaces are assumed to be either purely dif-
fuse or purely specular. Path 1 represents the direct diffuse reflection, path 2 the diffuse-
specular reflection, path 3 the diffuse-diffuse reflection and path 4 the specular-diffuse
reflection. Other possible paths, e.g. only specular (highlight) or specular-specular
reflection are not included in the figure.

eyepoint

image plane

specular diffuse

diffuse
specular

light source

1

2

3

4

Figure 1. Different paths of light reflection.

Standard projective algorithms (depth-buffer, scan-line, etc.) will only account for light
following path 1 and for the direct specular reflection of light, however, without shadow
testing. Standard ray tracing (Whitted 1980; Glassner 1989) does sample light following

4

path 1 (including shadow detection) and 2, but it does not account for the indirect reflec-
tion of light as a result of the interreflection between surfaces in the scene (path 3), nor for
the light that is first reflected by a specular surface before it is diffusely reflected by a
visible surface (path 4); see also (Arvo 1986). To capture this light it will be necessary to
cast secondary rays into all directions, but now these secondary rays will hit other surfaces
for which no intensity is known, and thus the sampling has to be done recursively (Kajiya
1986). Sampling efficiency can be improved by applying importance sampling strategies
(Kajiya 1986; Shirley and Wang 1991; Arvo and Kirk 1990) and by exploiting coherence,
for instance in the form of illuminance caching (Ward et al. 1988).
To avoid the expensive recursive viewpoint dependent sampling, a viewpoint independent
pre-processing - also known as the radiosity pass - can be done to access the global light
distribution in a scene and to precompute the amount of light that each surface receives
from its environment (Cohen and Greenberg 1985; Nishita and Nakamae 1985). The
radiosity pass can be done either by calculating the energy exchange between surfaces in
the scene by simultaneous solving a set of linear equations, or by a progressive radiosity
method that 'shoots' light from light sources to other surfaces; light which in turn is re-
shot to other surfaces, and so on, until a good approximation of the final light distribution
is achieved (Cohen et al. 1988). Just as with ray tracing, shooting is preferably done in a
stochastic and recursive (but also expensive) way, which is also known as 'particle tracing'
(Pattanaik and Mudur 1992).

algorithm meshing display light source
sampling

shadow
accuracy

time

a exact/
extensive

ray tracing
without spec.

no dependent
on mesh

short

b extensive ray tracing no dependent
on mesh

long

c moderate ray tracing shadow testing
primary sources

good longer

d low ray tracing also secondary
sources

better even longer

e no/low ray tracing recursive
sampling

best longest

Figure 2. Different versions of the two-pass radiosity algorithm.

There are several versions of two-pass algorithms that combine ray tracing-based render-
ing with a ray tracing-based radiosity pre-processing (Wallace et al. 1987, 1989); see
algorithm a, b, c, d, and e in fig. 2. The first (a) displays the pre-computed radiosity values,
just as the depth-buffer algorithm. The second version (b) takes the pre-computed
radiosity value as the diffuse intensity of the patch and adds the specular reflection com-
ponent to it by tracing secondary rays (Sillion and Puech 1989). This version still requires
an extensive radiosity pre-processing because the shadows from the major (point) light
sources are implicitly included in the radiosity shading. The third version (c) only uses the
pre-computed radiosity intensity as an improved ambient term and it resamples the light
from the most important light sources and patches to calculate more accurate shadows
(Shirley 1990; Chen et al. 1991; Kok and Jansen 1991; Kok et al. 1991). This version
performs a source selection or source classification during the radiosity pass to determine
which patches can be considered as important light sources. The contributions of these

5

selected sources are then not included in the pre-computed radiosity values; during the
rendering pass not only specular rays are traced, but also shadow rays are cast to the
selected light sources to accurately calculate their contribution to the shading of the
patches. The fourth version (d) re-samples all the light by shooting secondary rays to all
directions (Rushmeier 1988); now the radiosity shading is not used at all for display, but
only to quantify the light that is diffusely reflected by each patch and that is sampled
during the rendering by the secondary (shadow) rays.
The last version can be generalised in the aspect that sampling can be continued recur-
sively when the pre-computed radiosity value is not accurate enough (version e). Whether
recursion is only done until the first level of recursion, 'one-level path tracing' (Rushmeier
1988), or deeper can be made dependent on the detection of shading discontinuities
(highlights, shadow boundaries, etc.) in the neighborhood, or can be a function of the
required image quality.
The ultimate algorithm for realism will be a combined radiosity-rendering algorithm that
uses a recursive stochastic sampling technique both for shooting (particle tracing) and
sampling (ray tracing). With an importance-driven technique (Smits et al. 1992; Pattanaik
and Mudur 1993), the radiosity refinement can be focused on the surfaces that are visible.
Of course, the amount of ray intersections needed for these algorithms will be too large to
be performed in real time by one processor for some time to come, and we will have to
defer to parallel processing.

3. Parallel processing
The dedicated hardware and parallel processing approaches that have been so successfully
applied to the depth-buffer algorithm, cannot be applied directly to ray tracing, because the
ray-object intersection is much more complex than scan conversion and both the objects
and rays cannot be processed in a strict linear order suitable for pipe-lining.
In fact, ray tracing can be seen as three quite separate tasks: shading, ray traversal, and ray
patch intersection. The shading task initiates primary and secondary rays, performs local
light reflection, texture filtering, and anti-aliasing, and is responsible for the final pixel
color computation. In the radiosity pre-processing the shading task initiates the
hemisphere shooting and updates the patch radiosities. The ray traversal task takes the
rays and intersects them with the cells of the spatial subdivision structure, and finds the
patches that are candidate for ray intersection. The ray intersection task performs the
actual ray-patch intersection and returns the results to the shading task. The shading and
ray traversal tasks are very data intensive and not so much computing intensive. The
intersection task is both data and processing intensive.
This task breakdown was reason for Gaudet et al. (1988) implementing these tasks sepa-
rately on micro-coded processors which are connected to each other and to the frame
buffer to exchange (intermediate) results. In addition, shading, spatial subdivision, and
object data are continuously broadcast over three separate buses. The processors take the
information from the buses when they need it and when it comes by. The system can be
smoothly scaled up by adding more processors, but communication time will increase
proportionally with the size of the object data.
In general, these three different tasks are seldom considered in total. In most cases, the
main focus is on the ray traversal and ray intersection task. Dedicated VLSI implementa-
tion of the ray intersection task has first been considered by Kedem and Ellis (1984). A
proto-type of their ray casting engine for quadratic surfaces has actually been built
(Kedem and Ellis, 1989). A design for a VLSI chip for bicubic patch intersection was
published by Pulleyblank and Kapenga (1986, 1987). Work on this project has since then
been continued and extended to (two-pass) radiosity algorithms (Yilmaz et al. 1989). A

6

design has been made for a 'radiosity engine' in the form of a plug-in board to enhance the
performances of standard workstations for high-quality rendering (Shen et al. 1990,
1991). The board contains several intersection processors, each equiped with several ray
traversal units. As the basic computational primitive for hardware implementation was
chosen the intersection of a frustum (part of a hemisphere) of rays with a set of bicubic
patches. Being a more compact surface representation, the communication for bicubic
patches is considerably reduced compared to polygons. However, given several very fast
pipe-lined computational units to calculate many ray-patch intersections in parallel, the
ray-intersection will be extremely fast and the communication between the patch database
at the host and the intersection computation units will be the bottleneck. Besides, by ex-
ploiting coherence for neighbouring rays (see the following section), reduction in commu-
nication is also expected from a hierarchy of caches. See for details and simulation results
(Shen and Deprettere 1992).
Many publications have appeared on ray tracing using general purpose parallel proces-
sors, in particular using distributed memory systems (e.g. transputer systems), with many
showing excellent speedups. However, these good results are usually obtained provided
the object data base is replicated on each processor. For complex scenes the data
requirements may be very large, far larger than can be accommodated locally at each pro-
cessor, and now the complete data base must either only be kept by the host and the data
sent on request, or it can be distributed over the processors' local memory. This second
strategy is preferable due to the communication bottlenecks at the host that are bound to
occur with the first strategy.
Assuming that the combined memory of the multiprocessor system is sufficient to contain
the whole data base then an initial approach may be to allocate each processor an equal
portion of the data base up to the limit of its local memory. Processing load distribution
may now be performed in one of two ways. Firstly the tasks can be assigned to the pro-
cessors that contain the relevant data. In ray tracing, the object data can, for instance, be
distributed on the basis of an object space subdivision (Cleary et al. 1983) or an hierar-
chical box method (Scherson and Caspary 1988). Each processor stores the object data of
one (or more) partitions of a spatial subdivision. When a ray intersects one of these por-
tions, the task packet for that ray is sent to this processor and if no intersection occurs or
when additional secondary rays are generated then the ray(s) is sent to the processor that
stores the appropriate next cell. The object data distribution is thus static and the task dis-
tribution follows the 'ray flow' through the system. Although not strictly 'data driven' this
approach is often characterised as such. This allocation method will suffer from potential
load imbalances should certain areas of the scene attract the majority of the rays. A low-
resolution pre-processing can be applied to make a first estimation of the expected load
distribution (Salmon and Goldsmith 1988; Priol and Bouatouch 1989) and to correct for
this. However, as a result of the different ray directions, the processing load for each
partition will vary over time. To keep all the processors busy in such a situation it is
necessary to dynamically adjust the size of the partitions and redistribute the object data
accordingly. One such system was proposed by Dippé and Swensen (1984) and others
(Nemoto and Omachi 1986; I ` s , ler et al. 1991) have proposed further improvements. A
drawback of these methods is that if the ray flow varies quite some bit (and it mostly does)
then re-adjusting the object data does not pay and the efficiency is reduced instead of
improved. Kobayashi et al. (1988) try to avoid this by distributing a larger number of
space partitions over the processors. In this way, load balancing is better, but the amount
of data communication will increase.
The second strategy of work allocation uses a demand-driven approach: tasks are assigned
to processors when they are ready to accept new tasks (Green and Paddon 1989; Badouel
et al. 1990). The object data required to execute the task is not available locally then it has

7

to be requested from the appropriate remote processor that stores the data. To avoid
repeated requests for the same data item, frequently used data items are cached at the local
memory of the processor. Part of the memory is thus allocated to store a segment of the
data base, the other part is used as a local cache. It is of course preferable to schedule the
tasks not completely at random to the processors but instead to take into account the cache
contents. Tasks that use the same data should be preferably scheduled to the same
processor to allow the cache contents to be re-used. Each processor receives segments of a
coherent task and only when other processors run out of their work, segments are
assigned to these processors. This can also be implemented by a 'task stealing' strategy. A
drawback of the demand-driven approach is that much requested data items will be
resident in many caches and much communication is lost on the less used data items.
Another drawback is that as the number of processors increases, the amount of
communication will grow accordingly.
A hybrid approach is proposed by Scherson and Caspary (1988). Object data is dis-
tributed over the processors according to a spatial subdivision or (in their implementation)
a bounding box method. Intersection tasks are assigned in a data-driven manner to the
processors that contain the relevant data. Ray traversal tasks, however, are assigned in a
demand-driven mode: tasks are assigned to processors that are less busy with intersection
calculations. This hybrid strategy has the advantage that the intersection computations
provide a base load although different for each processor, and that the unbalance in inter-
section tasks can be compensated with ray traversal tasks, thus avoiding expensive load
balancing strategies involving large amounts of data communication. Unfortunately, the
ray traversal task is relatively simple and increasing the ray traversal task (by further
descending the bounding box hierarchy or by increasing the level of spatial subdivision)
increases the amount of communication. Thus, the work load is perfectly balanced and the
speed-up is almost linear, but the total performance is low, making this solution less cost
effective for a large number of processors.
Summarising, a pure data-driven approach does not seem to be very desirable because of
its dependency on the object distribution in space and associated (probably unevenly dis-
tributed) processing demand. Far worse, the processing load distribution will probably
vary rapidly over time, introducing a severe overhead for dynamic load balancing. Further,
because of the large number of rays, the communication overhead for the ray messages
will be large. A demand-driven approach, on the other hand, has few problems with load
balancing and seems more appropriate for very large data bases. But, here the problem is
to keep the data communication as a result of the data requests by the processing tasks as
low as possible. As most requests will concern the same (small set) of data items,
exploitation of coherence by use of caching is recognised by the proponents of the
demand-driven approach as an all important factor for efficiency (Green and Paddon
1989; Badouel et al. 1990; Shen and Deprettere 1992). In the rest of the paper we will
discuss this issue in more detail.
For the following discussion, we will partly abstract from the different hardware architec-
tures and consider a system consisting of a high-performance workstation enhanced with
a set of intersection processors, either in the form of general-purpose parallel processors
or of dedicated VLSI hardware, as the context for our simulation. The workstation itself
could be a shared-memory multi-processor system with enough memory to contain the
model and shading database. The shading and ray traversal tasks which are assumed to be
data intensive and less computing intensive are done on the workstation. The computing
intensive ray patch intersection is delegated to the intersection processors. The intersection
processors are connected to the host through a controller. The controller is connected to
the host with a bus or a fast link and has a relatively large cache. Each intersection

8

processor has his own local memory (fig. 3). The basic idea is very much the same as
described in (Green and Paddon 1989) and (Shen and Deprettere 1992).

controller

cache

interface
object database

host

bus

workstation

intersection
unit

cache

intersection
processor

interface

cache

intersection
processor

interface

cache

intersection
processor

interface

cache

intersection
processor

interface

Figure 3. Conceptual architecture (Green and Paddon 1989)

The processor inter-connection could be a bus or a network. With a larger number of
processors, the message latency becomes an important factor and a number of techniques
have been proposed to avoid a processor standing idle while an object data is fetched from
a remote location. Minimum path configurations (AMPs) and message reduction schemes
such as 'poaching' and 'snooping' have been shown to be successful in reducing
communication overheads and thus the latency for fetching a remote data item (Chalmers
1991; Chalmers and Paddon 1992). Nevertheless, for a large multiprocessor system this
delay may still be significant. Multi-threading allows each processor to trace the paths of a
number of rays concurrently so that should the computation associated with one ray be
delayed awaiting a remote data item, the other computations may still continue (Chalmers
et al. 1993). However, it has been shown that the maximum number of threads that can be
supported efficiently at each processor is limited and what is worse, this limit is lower for
larger number of processors due to increasing message densities.
While the previous methods have been shown to improve the performance of multipro-
cessor systems, it is nevertheless only in combination with the ideas of caching are we
likely to achieve performances on parallel systems approaching the real-time that we
desire. Caching is able to exploit any coherence within a scene to significantly reduce the
number of remote data item fetches and so once more allow good speed-ups even when
the data is distributed across all the processors. Green and Paddon (1989) discuss several
caching strategies. Their starting point is a demand-driven approach on basis of image
space subdivision. Tasks, assigned to processors, make requests for object data, which are
satisfied either by a local resident set, a local cache, the cache of the controller, the resident
sets and caches of neighboring processors, or by the host. A low resolution ray tracing is
proposed as a profiling method to select the resident set and the initial cache filling. A
similar strategy is proposed in (Shen and Deprettere 1992).

9

intersection
processor interface

main
memory

resident
set

cache caches
controller
and
other
proces-
sors

Figure 4. Caching strategy (Green 1991)

The effectiveness of caching is significantly dependent on the coherence that the algorithm
can offer, and thus the overall effectiveness of parallel processing is is also significantly
dependent on the way the ray tracing and radiosity algorithms proceed and the order in
which intersection calculations are scheduled.

4. Coherence
Green and Paddon (1989) discuss several forms of coherence. Beside image and frame
coherence they discern the following types:
- ray coherence: neighbouring rays will likely intersect the same surfaces; this allows

reuse of patch data used for previous rays (Speer et al. 1985; Hanrahan 1986, Arvo and
Kirk 1987).

- object coherence: local neighborhoods of space tend to be occupied by only a small set
of the total number of objects; this allows for a fast localization of the candidate set for
intersection with a spatial subdivision technique (Glassner 1989)

- data coherence: requests to the object data base will tend to be restricted to a small subset
of the whole data base and tend to show a large amount of spatial locality (Green and
Paddon 1989).

Within a certain time span, data coherence can be interpreted as a more general form of
ray and object coherence: given a sequence of data requests, many requests will be for the
same data items. This form of coherence is very much dependent on the order the algo-
rithm proceeds and traverses through object space.
We will now discuss the different forms of coherence in more detail.
4.1 Ray coherence
Clustering neighboring rays into frustums has been proposed earlier to reduce ray tracing
costs and to perform efficient anti-aliasing (Speer et al. 1985; Hanrahan 1986). Ray
frustums are a very versatile computational primitive within ray tracing and radiosity. The
primary rays in ray tracing form a frustum with the eye point as origin. Ray frustums are
further used to sample area light sources, and to simulate depth-of-focus and motion blur.
In radiosity algorithms, hemispheres of rays are used for shooting.
Intersection of a frustum of rays with a set of patches as a computational primitive is par-
ticularly attractive for a pipe-lined hardware intersection unit that can test a bundle of rays
simultaneously against a set of patches (Shen et al. 1990). To further increase coherence
and to distribute the processing over multiple intersection units, Shen et al. subdivide each
frustum into sectors (see fig. 5). All rays in one sector will be loaded on one intersection
computation unit. The size (angle) of the sectors is made dependent on the expected patch
density and patch distribution to obtain a good load balancing over the different
intersection units and to keep the number of calls to the database minimal.

10

shooting patch (preprocessing)
sampling patch (display)

patches

rays
sector plane

sector angle

grid of regular space subdivision

Figure 5. Ray frustum and sectors.

The ray frustum intersection is indeed a versatile computational primitive for hardware im-
plementation. However, it has also some drawbacks. The ray frustum method is mainly in-
tended for undirected shooting and sampling (see fig. 6), which is to avoid the overhead at
the host involving searching the whole data base and clustering the rays into sectors. This
means that rays are cast without aiming at a specific patch or a specific point (e.g. a
vertex). This fits well within a Monte Carlo type of sampling, but not very well within a
progressive radiosity method, as it is implemented usually (with directed shooting). See
for a discussion on the advantages and disadvantages of directed and undirected sampling
(Wallace et al. 1989), and (Shirley and Wang 1992) where these are called implicit and
explicit sampling. The undirected sampling poses some additional constraints on the
resolution of the mesh with respect to the resolution of the rays.

Figure 6. Directed (left) versus undirected shooting (right).

11

If the number of rays is too low and the mesh resolution too high then some elements of
the mesh will not receive a contribution or the contribution will not be spread evenly. This
in fact is bound to happen because as the distance over which the rays travel increases, the
rays will get further separated and thus the mesh resolution can never be optimally adapted
to the ray density. See for instance the disastrous effect of undirected shooting from a
light source to a patch that is regularly subdivided into 256 elements (fig. 7). Directed
shooting takes 293 rays (fig. 7h right-below). A comparable quality can only be obtained
with more than 100,000 rays shot in an undirected way (see fig. 7a-g).

Figure 7. Results of radiosity pass for a patch in front of a light source. Undirected
shooting a: 1, b: 10, c: 100, d: 1000, e: 10000, f: 100,000 rays, g: 1,000,000 rays, and
directed shooting: h: 293 rays.

To accommodate the resolution of the receiving mesh to the resolution of the rays, an
hierarchical mesh data structure should be used that assigns intensity values to levels cor-
responding to the density of the receiving rays (Asensio 1992; Languénou et al. 1992). At
the end of the radiosity pass, the different levels could then be merged to obtain the
radiosity values of the patch vertices. Further, the number of rays could be made depen-
dent on the (expected) density of the patches in a sector, the sizes of the patches, the dis-
tance of the patches from the ray origin, the intensity of the patches (during display), the
chance of shading discontinuities (both during radiosity preprocessing and display), the
reflectance properties of the patches, etc. So source selection and source classification
criteria could be applied here (Kok and Jansen 1991; Chen et al. 1991). The ray density
would then reflect the 'importance' of the shooting/sampling direction of that sector.
Another problem with frustum tracing is that shooting preferably is not done in a hemi-
sphere type of way, but by shooting individual rays from stochastically distributed posi-
tions on the patch preferably reflecting the energy distribution over the patch. Ray direc-
tions should be stochastically distributed as well to avoid aliasing. Finally, for specular
and mirroring reflection, a frustum of rays will spawn a large number of secondary rays,
however, with different starting points and with possible different directions. This will all
have a dramatic effect on the ray coherence. Therefore, a compromise will have to be
sought here between accuracy and coherence.

12

4.2 Object coherence
The fact that a certain neighborhood of space will tend to contain only a small subset of
the total objects in a scene, allows us to localize the candidate set for intersection with a
given ray by applying a spatial subdivision technique. Regular grids as well as adaptive
space subdivision schemes have been proposed (Glassner 1989). A uniform grid allows
for a fast ray traversal, but does not adapt well to an uneven distribution of objects. A two-
level grid where complex objects have their own internal grid, seems to combine the
advantages of fast traversal and adaptive space subdivision. Unfortunately, for a frustum
of rays the spatial subdivision is not nearly so effective as for single rays. Only near to the
frustum origin, object localization is achieved. As the rays propagate through space, the
distance between the rays increases and ray coherence diminishes. This is amplified by the
fact that some of the rays will be intercepted by patches while others continue. Object
coherence is also small for objects consisting of a large number of small patches (for
instance a keyboard with individually modeled keys). Each ray will hit another patch.
Again, as with the shooting resolution, the level of object intersection has to be adapted to
the density of the rays. A large number of small patches should be grouped together if this
set of patches is only intersected by a small number of rays (Kok 1993). Further, ray
tracing should be stopped when the coherence drops below a threshold value. Rays could
be assigned values based on the average intensity of a group or subspace. Like in the
virtual walls techniques (Xu et al. 1989), planes of the spatial subdivision structure could
be given intensity values representing the scene behind them. Rays that would loose
coherence could be terminated by assigning them values from this object or space hierar-
chy.
4.3 Data coherence
For the more general form of coherence in subsequent data requests, Green and Paddon
(1989) keyed the term data coherence. This type of coherence is caused by repetition in
the algorithm, for instance by shooting multiple hemispheres from the same patch, or by
repeated shadow testing for the same light sources. In general this type of coherence is
very much dependent on the order the algorithm proceeds, in particular, on the order rays
trees are traversed through space. Each primary ray will spawn, beside shadow rays, a
number of secondary rays to account for specular reflection and transparency. Each of
these secondary rays might generate in turn a number of tertiary rays, and so forth. The
amount of coherence in the primary rays will be large, but will drop quickly with each new
generation of rays (see fig. 8).

primary rays

secondary rays

tertia iry rays

shadow rays

eye point

l ight source

object

object

Figure 8. Ray tree

13

However, if the density of the primary rays increases - say from 4 per pixel to 64 per
pixel- then the coherence for the primary rays will improve only slightly (because it is
already high), but the coherence for the secondary and following rays will grow consi-
derably. This notion is the basic idea behind the adaptive rendering algorithm proposed in
the following section.
Note also that a 'breadth-first' shooting of the ray tree may be preferably over 'depth-first'
shooting of the ray tree (Hanrahan 1986). Breadth-first shooting will require that
intermediate results will have to be temporarily stored. The same would be true for
methods that would try to benefit from coherence between neighbouring ray trees, for
instance to shoot simultaneously to the same light source. In general, a breadth-first
approach, i.e. first shooting all the primary rays, then all the secondary rays, etc. would be
beneficial to the coherence. Of course, in practice this strategy cannot be fully exploited
because of the limitations to the amount of processing and storage that will be needed for
the intermediate results. Note however, that in the progressive radiosity this actually is
done: ray recursion is only applied for specular reflection. Diffuse reflection is postponed
until a patch becomes a shooting patch. This can be accomplished because the diffuse
reflection is more or less direction independent. Recursive shooting (particle tracing) can
be characterised as a depth-first approach.
Finally, a more general form of spatial coherence could also be exploited. For instance, in
progressive radiosity, speed of convergence could be sacrificed to optimise coherence
resulting from shooting from neighbouring patches, i.e. patches near to each other are
processed directly after each other, ignoring for a while patches with a higher priority at a
larger distance.

5. Coherence improving methods
At this point we will bring together the different components of our analysis. Our main
concern is a ray tracing algorithm with a radiosity pre-processing and with additional
shadow sampling for the main light sources to improve shadow accuracy (see section 2).
The algorithm will be implemented on a high-performance workstation enhanced with
several intersection processors. Data communication between host and intersection pro-
cessors is reduced by use of caching (section 3). Nevertheless, the communication
between the host and the intersection processors will be considered to be the bottleneck in
the system (and not the shading calculations or ray traversal calculations by the host), and
thus the performance of the system will be determined mainly by the appearance of
coherence in subsequent patch requests (section 4). What we want to achieve is that the
amount of communication will be kept in proportion to the amount of intersection compu-
tations, that is, the coherence should be kept at a constant, preferably high, level.
There are several ways to achieve this: by choosing a suitable breadth- or depth-first ray
tracing method, by improving object coherence with an hierarchical object data base, and
by a task and management strategy that optimally matches processing and data demands.
5.1 Recursive depth and sampling control
We could imagine different modes for the rendering (given an already calculated radiosity
pre-processing) in the same style as the adaptive refinement method of Chen et al. (1991):
- direct display of the radiosity mesh; only primary rays are cast and shading is directly
interpolated from the pre-calculated radiosity values; only the direct visible patches will be
communicated to the intersection unit
- ray tracing with shadow testing; shadow testing is added to improve shadow accuracy for
the most important light sources; the intersection processors will now request also patches
in between the visible patches and the light sources

14

- ray tracing with secondary rays for simulating mirroring reflections and transparency;
each of the secondary will in its turn also spawn shadow rays
- ray tracing with diffuse and specular inter-reflection; secondary rays are cast into all
directions to sample the indirect light; at this stage we use the pre-computed radiosity
shading only to answer these ray queries; in some cases, if required, sampling may be
continued for another recursive level
- in addition, a continuous shooting process could refine the radiosity solution, in particu-
lar for the visible part of the scene. Also here a trade-off can be made between a simple
progressive radiosity pass or a more recursive, stochastic method.
It is clear that the first mode (only primary rays) provides the highest degree of coherence,
and that coherence will be minimal for the most elaborate form of sampling for the diffuse
and specular reflection. However, as the initial sampling rate of the primary rays increases,
the coherence will increase as well, in particular for the secondary and tertiary rays, and the
more ray recursion can be allowed, given a pre-specified amount of coherence (to balance
the computation and communication). The basic idea, therefore, is to link the level of ray
recursion to the amount of available coherence. The coherence in its turn is dependent on
the initial chosen sampling rate of the primary rays and on local patch parameters such as
the curvature of the surface, the number of relevant light sources, etc. Decisions to
continue ray tracing or to start another level of ray recursion should, therefore, preferably
be made based on local criteria.
The algorithm could be implemented as follows. As the primary rays hit a patch, the
intersections are collected on a patch by patch basis. Secondary and shadow rays are cal-
culated for these points and the amount of coherence is estimated on basis of the specular
coefficient, the number of rays, the position and direction of the rays, etc. Only if the
coherence is high enough then (frustums of) rays are sent to the intersection processors.
Otherwise, ray tracing will be deferred until enough rays have been collected, or alterna-
tively, a pre-processed radiosity/ambient value will be assigned as an estimate for the cor-
rect value.
Further, each ray will only be continued as long as there is enough coherence; if the
coherence drops below a certain level then the ray will be terminated and assigned a value
from the virtual database (e.g. the cell planes of the spatial subdivision). Also, a hierar-
chical element mesh structure or a hierarchical object grouping will be applied to adapt the
sampling resolution of the rays to the size of the elements, patches and objects.
5.2 Task and data management
So far, the proposed coherence techniques do not specify how the intersection tasks are
assigned to the processors. It will be clear that the primary rays within one frustum (or
section of a frustum) will preferably be assigned to the same processor. This may also
hold for some of the secondary and shadow rays. At a certain point, however, ray and
object coherence drops below a certain level and only a more general form of spatial
coherence which is more difficult and expensive to grasp (e.g. the overlap in visible
patches seen from different, possible remote, patches), is left.
When coherence becomes low, it means that data communication will grow. This may be
to the amount that 'data flow' communication will exceed the amount of 'ray flow' com-
munication that would occur with a pure data-driven approach. Therefore, we could
imagine a hybrid approach in line with (Scherson and Caspary 1988) where each proces-
sor would store a partition of the spatial subdivision and process the (random-oriented)
rays that traverse that partition. The more coherent ray frustums could then, in a demand-
driven mode, be assigned to processors that are less busy with their own partition. The
result will be that many-referenced items may be replicated over many processors, how-

15

ever, without increasing the data communication for the less-used data items. In case more
coherence would be needed for the demand-driven tasks then a specialisation can also be
applied: some processors could work purely or mainly in a demand-driven mode and
other processors in a data-driven mode.

6. Conclusions and discussion
Data communication will be the main bottleneck in general purpose parallel processing
systems with distributed memories for some time to come. In custom-designed systems
the communication bandwidth can be optimised, but data transfer rates will still be a limit-
ing factor. Data communication requirements can be relieved with a suitable caching
strategy. The effectiveness of caching will depend strongly on the amount of data coher-
ence the algorithm can offer. We have discussed several sources of coherence and pro-
posed some methods to increase object and spatial coherence. We have analysed possible
data and task management strategies and proposed a hybrid algorithm that uses both a
demand- and data-driven task assignment strategy. Demand-driven will be applied for
high-coherent ray intersection tasks and data-driven for low-coherent tasks.
There are several issues to be explored yet. One is the trade-off between regular and
stochastic ray tracing. Regular sampling/shooting (standard ray tracing and progressive
radiosity) will proceed in incremental order and while ray coherence is optimal, the load
balancing may be strongly effected by the direction of the rays. A stochastic sampling
approach, on the other hand, casts rays from random positions into random directions and
will exhibit less data coherence, but the overall pattern of computation will be more stable.
It may then be worthwhile to optimise not only the load balancing, but also the
communication flow between processors, for instance, by minimising the average distance
of the ray flow. It is not to say in advance whether an optimal load balancing and
consistent ray flow will compensate for the loss of coherence. This will have to be verified
by experiments.
Ray tracing in combination with particle tracing will provide the biggest challenge. The
algorithm can be described as a stochastic depth-first shooting and sampling. It can effec-
tively model all kinds of anisotropic reflection and scattering in participating media.
However, coherence will be minimal. This will probably mean that for parallel processing
the load balance is perfect, but that ray flow will be large and object data flow large as well,
unless local memory will be sufficient to encompass all object data that is relevant for a
(semi-permanent) task.
A possible architecture is depicted in fig. 9. There are three clusters of processors, one
works in a demand-driven mode, one in a data-driven mode, and one processes the ray
tracing results and does the final image synthesis. The demand-driven cluster processes
the first generations of rays for both the particle tracing and the rendering. Rendering rays
have priority over particle rays, however, when the view point does not change then particle
rays may be given a higher priority. As soon as coherence has dropped below a pre-
specified level, then the rays are passed to the data-driven cluster. The proposed architec-
ture could be converted into a minimum-path configuration. For instance with a 6x6 data-
driven cluster, the maximum distance from any of the demand-driven/image processors to
any of the data-driven processors could be minimized to four. Which configuration is
optimal will depend very much on what the critical communication paths will be.
In the discussion so far, we have neglected the shading task. Texture mapping and physi-
cally-based reflection models may involve quite some data. As long as the shading task
can be done by the host, the data can reside at the host. If the shading task has to be dis-
tributed, then given the amount of data, it can only be in data-driven mode. The same may
apply for the radiosity mesh information.

16

demand-driven
particle tracing

demand-driven
ray tracing

data driven
particle & ray tracing

host

SC

demand-driven
ray tracing

image controller

image processing

system controller

Figure 9. Architecture for combined particle-ray tracing.

Our intention was to review the current state-of-the-art and outline possible directions for
further research. A lot of work still has to be done before we will see photo-realistic
images of complex scenes being generated in real time.

Acknowledgements
The ideas reported in this paper have grown out of discussions with Arjan Kok and the
members of the Radiosity Engine Project, Ed Deprettere, Gerben Hekstra, Li-Sheng Shen
and Theo Verelst from the Network Theory Section of the Faculty of Electrical
Engineering of Delft University of Technology.

References
Akeley, K., Jermoluk, T. (1988), High-performance Polygon Rendering, Computer

Graphics 22(4): 239-246, Siggraph'88.
Arvo, J. (1986), Backward Ray Tracing, Developments in Ray Tracing, Siggraph'86

course notes.
Arvo, J., Kirk, D. (1987), Fast Ray Tracing by Ray Classification, Computer Graphics

21(4):55-64.

17

Arvo, J., Kirk, D. (1990), Particle Transport and Image Synthesis, Computer Graphics
24(4):63-66, Siggraph'90.

Asensio, F., (1992), A Hierarchical Ray Casting Algorithm for Radiosity Shadows,
Proceedings of the 3rd Eurographics Workshop on Rendering, Bristol.

Badouel, D., Bouatouch, K. Priol, T. (1990), Strategies for Distributing Data and Control
for Ray-Tracing on Distributed Memory Parallel Computers, Siggraph Course
Notes 28, 1990. To appear in Computer Graphics and Applications.

Baum, D.R., Winget, J.M. (1990), Real Time Radiosity Through Parallel Processing and
Hardware Acceleration, Computer Graphics 24(2): 67-75.

Baum, D.R., Mann, S., Smith, K.P., Winget, J.M. (1991), Making Radiosity Usable:
Automatic Preprocessing and Meshing Techniques for the Generation of Accurate
Radiosity Solutions, Computer Graphics 25(4): 51-60.

Campbell, A.T., Fussell, D.S. (1990), Adaptive Mesh Generation for Global Diffuse
Illumination, Computer Graphics 24(4): 155-164, Siggraph'90.

Chalmers, A. G. (1991), A Minimum Path System for Parallel Processing. PhD thesis,
University of Bristol.

Chalmers, A.G., Paddon, D.J. (1989), Communication Efficient MIMD Configurations.
Proc. of the 4th SIAM Conference on Parallel processing for Scientific Computing,
Chicago.

Chalmers, A.G., Paddon, D.J. (1991). Parallel Processing in the Progressive Refinement
Radiosity Method. Proceedings of the 2nd Eurographics Workshop on Rendering,
Barcelona.

Chalmers, A.G., Stuttard, D., Paddon, D.J. (1993), Data Management for Parallel Ray
Tracing of Complex Images. International Conference on Computer Graphics,
Bombay.

Chen, S.E., Rushmeier, H., Miller, G., Turner, D. (1991), A Progressive Multi-Pass
Method for Global Illumination, Computer Graphics 25(4): 165-174, Siggraph'91.

Clark, J. (1982), The Geometric Engine: a VLSI Geometry System for Graphics,
Computer Graphics 16(3): 127-133, Siggraph'82.

Cleary, J.G., Wyvill, B., Birtwistle, G., Vatti, R. (1983), Multiprocessor Ray Tracing, Tech.
Report 83/128/17, Dept. of Computer Science, Univ. of Calgary; also in Computer
Graphics Forum 5(1): 3-12.

Cohen, M.F., Greenberg, D.P. (1985), The Hemi-cube: A Radiosity Solution for Complex
Environments, Computer Graphics 19(3): pp 31-40, Siggraph'85.

Cohen, M.F., Greenberg, D.P., Immel, D.S., Brock, P.J. (1986), An Efficient Radiosity
Approach for Realistic Image Synthesis, IEEE Computer Graphics and Applications
6(3): 26-35.

Cohen, M.F., Chen, S.E., Wallace, J.R., Greenberg, D.P. (1988), A Progressive
Refinement Approach to Fast Radiosity Image Generation, Computer Graphics
22(4): 75-84, Siggraph'88.

Cook, R.L. (1986), Stochastic Sampling in Computer Graphics, ACM Transactions on
Graphics 5(1): 51-72.

Cook, R.L, Torrance, K.E. (1982), A Reflectance Model for Computer Graphics, ACM
Transactions on Graphics 1(1): 7-24.

Dippé, M., Swensen, J. (1984), An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis. ACM Computer Graphics 18(3):149-
158.

Dippé, M., Wold, E.H. (1985), Antialiasing through Stochastic Sampling, Computer
Graphics 19(3): 69-78, Siggraph'85.

18

Gaudet, S., Hobson, R., Chilka, P., Calvert, T. (1988), Multiprocessor Experiments for
High-Speed Ray Tracing, Transactions on Graphics 7(3):151-179.

Glassner, A.S. (1989), Introduction to Ray Tracing, Academic Press.
Green, S., Paddon, D. (1989), Exploiting Coherence for Multiprocessor Ray Tracing.

Computer graphics and Applications, 4(10):15-22.
Green, S. (1991), Parallel Processing for Computer Graphics. Research Monographs in

Parallel and Distributed Computing, Pitman Publishing, London.
Hanrahan, P. (1986), Using Caching and Breadth First Search to Speed Up Ray Tracing,

Proc. Graphics Interface'86, Canadian Information Processing Society, Toronto, pp.
56-61.

Heaberli, P., Akeley, K. (1990), The Accumulation Buffer: Hardware Support for High-
Quality Rendering, Siggraph 24(4): 309-318.

Heckbert, P.S., (1986), Survey of Texture Mapping, Computer Graphics and Applications
6(11): 56-67.

Heckbert, P.S. (1990), Adaptive Radiosity Textures for Bidirectional Ray Tracing,
Computer Graphics 24(4): 145-154, Siggraph'90.

Heckbert, P.S. (1992), Discontinuity Meshing for Radiosity, Proceedings of the 3rd
Eurographics Workshop on Rendering.

I ` s , ler, V., Aykanat, C., Özgüç, B. (1991), Subdivision of 3D Space Based on the Graph
Partitioning for Parallel Ray Tracing, Proceedings 2nd EG Workshop on
Rendering, Barcelona.

Jansen, F.W., Kok, A.J.F., Verelst, T. (1992), Hardware Challenges for Ray Tracing and
Radiosity Algorithms. Proceedings 7th Workshop on Graphics Hardware,
Cambridge England, September 1992, Eurographics Technical Report pp 123-134.

Kajiya, J.T. (1986), The Rendering Equation, Computer Graphics 20(4): 143-150,
Siggraph'86.

Kedem, G., Ellis, J.L. (1984), The Ray Casting Machine, Proc. IEEE Int. Conf. on
Computer Design: VLSI in Computers (ICCD'84), IEEE Computer Society Press,
533-538.

Kedem, G., Ellis, J.L. (1989), The Ray-Casting Machine. In: Dew, P.M., Earnshaw, R.A,
Heywood, T.R., Parallel Processing for Computer Vision and Display, Addison-
Wesley Publishing Company, p. 378-401.

Kirk, D., Voorhies, D. (1990), The Rendering Architecture of the DN10000VS, Computer
Graphics 24(4): 299-307, Siggraph'90.

Kirk, D., Arvo, J. (1991), Unbiased Sampling Techniques for Image Synthesis, Computer
Graphics 25(4): 153-156, Siggraph'91.

Kobayashi, H., Nishimura, S., Kubota, H., Nakamura, T. Shigei, Y. (1988), Load
Balancing Strategies for a Parallel Ray-Tracing System Based on Constant
Subdivision, The Visual Computer 4(): 197-209.

Kok, A.J.F., Jansen, F.W., Woodward, C. (1991), Efficient Complete Radiosity Ray
Tracing Using a Shadow Coherence Method, Report of the Faculty of Technical
Mathematics and Informatics, nr. 91-63, 1991. To appear in The Visual Computer.

Kok, A.J.F., Jansen, F.W. (1991), Source Selection for the Direct Lighting Computation
in Global Illumination, Proceedings of the 2nd Eurographics Workshop on
Rendering. To be published by Springer Verlag.

Kok, A.J.F., Jansen, F.W. (1992), Adaptive Sampling of Area Light Sources in Ray
Tracing Including Diffuse Interreflection. Computer Graphics Forum 11(3): C289-
C298, Eurographics'92.

19

Kok, A.J.F. (1993), Grouping of Patches in Progressive Radiosity, Proceedings 4th EG
Workshop on Rendering (this volume).

Languénou, E., Bouatouch, K., Tellier, P. (1992), An Adaptive Discretization Method for
Radiosity, Computer Graphics Forum 11(3): C205-C216, Eurographics'92.

Lee, M.E., Redner, A., Uselton, S.P. (1985), Statistically Optimized Sampling for
Distributed Ray Tracing, Computer Graphics 19(3): 61-67, Siggraph'85.

Lischinski, D., Tampieri, F., Greenberg, D.P. (1992), A Discontinuity Meshing Algorithm
for Accurate Radiosity, Computer Graphics and Applications 12(6):25-39.

Mitchell, D.P. (1987), Generating Antialiased Images at Low Sampling Densities,
Computer Graphics 21(4): 65-72, Siggraph'87.

Nemoto, K., Omachi, T. (1986), An Adaptive Subdivision by Sliding Boundary Surfaces
for Fast Ray Tracing, Proc. Graphics Interface'86, Computer Graphics Society,
Montreal, pp. 43-48.

Nishita, T., Nakamae E. (1985), Continuous Tone Representation of Three-Dimensional
Objects Taking Account of Shadows and Interreflection, Computer Graphics 19(3):
23-30, Siggraph'85.

Painter, J., Sloan, K. (1989), Antialiased Ray Tracing by Adaptive Progressive Refinement,
Computer Graphics 23(3): 281-288, Siggraph'89.

Pattanaik, S.N., Mudur, S.P. (1992), Computation of Global Illumination by Monte Carlo
Simulation of the Particle Model of Light, Proceedings 3rd Eurographics Workshop
on Rendering, Bristol.

Pattanaik, S.N., Mudur, S.P. (1993), The Potential Equation and Importance in
Illumination Computations, to appear in Computer Graphics Forum.

Priol, T., Bouatouch, K. (1989), Static Load Balancing for a Parallel Ray Tracing on a
MIMD Hypercube, The Visual Computer 5(12): 109-119.

Pulleyblank, R.W. and Kapenga, J. (1986), VLSI Chip for Ray Tracing Bicubic Patches,
In: Advances in Computer Graphics Hardware I, Springer Verlag, Proceedings First
Eurographics Workshop on Hardware, 125-140.

Pulleyblank, R.W. and Kapenga, J. (1987), The Feasibility of a VLSI Chip for Ray
Tracing Bicubic Patches, Computer Graphics and Applications 7(3): 33-44.

Rushmeier, H. (1988), Realistic Image Synthesis for Scenes with Radiatively Participating
Media, PhD thesis, Cornell University, 1988.

Salmon, J., Goldsmith (1988), A Hypercube Ray-tracer. Proc. of the 3rd Conference on
Hypercube Concurrent Computers and Applications Vol. II, ACM Press, pp. 1194-
1206.

Scherson, I.D., Caspary, E. (1988), Multiprocessing for Ray Tracing: A Hierarchical Self-
balancing Approach, The Visual Computer 4(4):188-196.

Shen, L.-S., Deprettere, E., Dewilde, P. (1990), A New Space Partition Technique to
Support a Highly Pipelined Parallel Architecture for the Radiosity Method, In:
Advances in Graphics Hardware V, Springer Verlag, Eurographics Hardware
Workshop 1990.

Shen, L.-S., Laarakker, F.A.J., Deprettere, E. (1991), A New Space Partition Technique to
Support a Highly Pipelined Parallel Architecture for the Radiosity Method II, In:
Advances in Graphics Hardware VI, Springer Verlag, Eurographics Hardware
Workshop 1991.

Shen, L.-S., Deprettere, E. (1992), A Parallel-Pipelined Multiprocessor System for the
Radiosity Method, Proceedings of the Eurographics Hardware Workshop 1992.
Eurographics Technical Report Series, p. 106-122.

20

Shirley, P. (1990) A Ray Tracing Method for Illumination Calculation in Diffuse Specular
Scenes, Proceedings Computer Graphics Interface '90, p. 205-212.

Shirley, P., Wang, C. (1991), Direct Lighting Calculation by Monte Carlo Integration,
Proceedings of the 2nd Eurographics Workshop on Rendering, Barcelona.

Shirley, P., Wang, C. (1992), Distributed ray tracing: theory and practice. Proceedings of
the 3rd Eurographics Workshop on Rendering, Bristol.

Sillion, F., Puech, C. (1989), A General Two Pass Method Integrating Specular and
Diffuse Reflection, Computer Graphics 23(3): 335-344, Siggraph '89.

Smits, B.E., Arvo, J.R., Salesin, D.H. (1992), An Importance-Driven Radiosity Algorithm,
Computer Graphics 26(2): 273-282, Siggraph'92.

Speer, L.R., DeRose, T.D., Barsky, B.A. (1985), A Theoretical and Empirical Analysis of
Coherent Ray Tracing, Proceedings Graphics Interface'85, Springer Verlag, pp 11-
25.

Torborg, J.G. (1987), A Parallel Processor Architecture for Graphics Arithmetic
Operations, Computer Graphics 21(4): 197-204, Siggraph'87.

Wallace, J.R., Cohen, M.F., Greenberg, D.P. (1987), A Two-Pass Solution to the
Rendering Equation: A Synthesis of Ray Tracing and Radiosity Methods, Computer
Graphics 21(4): 311-320, Siggraph'87.

Wallace, J.R., Elmquist, K.A., Haines E.A. (1989), A Ray Tracing Algorithm for
Progressive Radiosity, Computer Graphics 23(2):315-324, Siggraph'89.

Ward, G.J., Rubinstein, F.M., Clear, R.D. (1988), A Ray Tracing Solution for Diffuse
Interreflection, Computer Graphics 22(4): 85-92, Siggraph'88.

Ward, G.J. (1991), Adaptive Shadow Testing for Ray Tracing, Proceedings of the 2nd
Eurographics Workshop on Rendering, Barcelona.

Whitted, T. (1980), An Improved Illumination Model for Shaded Display,
Communications of the ACM 23(6): 343-349.

Xu, H., Peng, Q-S., Liang, Y-D. (1989), Accelerated Radiosity Method for Complex
Environments, Proceedings Eurographics, Elsevier Science Publishers, p.51-59.

Yilmaz, A.C., Hagestein, C., Deprettere, E., Dewilde, P. (1989), A Hardware Solution to the
Generalized Two-Pass Approach for Rendering of Artificial Scenes, In: Advances in
Graphics Hardware IV, Springer Verlag, Proceedings Eurographics Hardware
Workshop 1989, 65-79.

