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ABSTRACT

Parallelising ray tracing with a data parallel approach allows ren-
dering of arbitrarily large models, but the inherent load imbalances
may lead to severe inefficiencies. To compensate for the uneven
load distribution, demand-driven tasks may be split off and sched-
uled to processors that are less busy. We propose a hybrid schedul-
ing algorithm which brings tasks and data together according to co-
herence between rays. The amount of demand-driven versus data-
parallel tasks is a function of the coherence between rays and the
amount of imbalance in the basic data-parallel load.

Processing power, communication and memory are three re-
sources which should be evenly used. Our current implementation
is assessed against these requirements, showing good scalability
and very little communication at the cost of a slightly larger
memory overhead.

CR Categories: D.1.3 [Programming Techniques]: Parallel Pro-
gramming; I.3.0 [Computer Graphics]: General I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

Keywords: Parallel computing, hybrid scheduling, ray tracing

1 INTRODUCTION

Physically correct rendering of artificial scenes requires the sim-
ulation of light behaviour. Such lighting simulations can be very
expensive in terms of computation and memory requirements. This
means that an accurate lighting simulation may take between a cou-
ple of hours to several days to compute, even with current state of
the art hardware. Moreover, the scene may include several millions
of polygons, enhanced with megabytes of texture data. For radiosity
and diffuse ray tracing, additional meshing and illuminance caching
data structures may also take significant amounts of memory.

Parallel processing offers the possibility of speeding up realistic
rendering algorithms. Previous approaches can be roughly cate-
gorised into demand driven and data parallel techniques. Demand
driven [8], usually equivalent to image space partitioning [5, 13, 1],
subdivides the screen into a number of regions, where each region
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represents a task. A number of processors executes these tasks and
whenever a task is completed, a processor requests a new one from
the master - hence the name demand driven.

If the entire scene description can be replicated over the proces-
sors, this approach may lead to very good speed-ups and is known
to be ‘embarrassingly parallel’. However, for very large data sets,
this assumption may not hold and data must be distributed over the
processors. Data communication then becomes inevitable, which
has an adverse effect on the speed-up. Some performance may be
regained by employing caching techniques. However, the amount
of data communication and the lack of data coherence between
cached objects may destroy the efficiency.

Data parallel approaches [6, 3, 11, 1] are usually object space
partitioning techniques. Here, the geometry is distributed over the
processors and ray tasks are migrated to the processors that hold
the relevant data. If a ray traced by a certain processor does not
intersect any objects, it is sent to the processor that holds the neigh-
bouring data. That processor will then continue tracing the ray; a
process repeated until either the ray leaves the environment or an
intersection is found.

Due to the distribution of data, very large scenes may be ren-
dered. Unfortunately, both view point and light sources may prove
to be hot-spots in the scene, and will lead to load imbalances. Fur-
thermore, the number of rays that migrate to a different processor
may be very high, resulting in a large communication overhead.

Overlaying demand driven and data parallel tasks could over-
come the disadvantages of both these techniques. Such hybrid
scheduling techniques [18, 10] can lead to a good load balance,
while still being able to render very large scenes. An obvious
scheme would be to subdivide the work into demand driven ray
traversal and data parallel ray intersection tasks [18, 12]. The spa-
tial subdivision structure is then replicated, while the geometry is
distributed. However, the demand driven tasks should be suffi-
ciently expensive to compensate for the load imbalance caused by
the data parallel component. Otherwise, control over work load
and communication distributions may be lost and performance de-
grades as in data parallel approaches. Ray traversal typically takes
less than 10% of the total rendering time, and hence a good load
balance cannot be achieved using ray traversal only.

Alternatively, coherence could be the criterion to subdivide tasks
into data parallel and demand driven parts [16]. Coherent tasks,
which will require a small data set while being sufficiently expen-
sive, are good candidates to re-schedule as demand driven tasks,
while the remainder of the tasks is handled in data parallel fashion.
In [16] the demand driven component only consisted of primary
rays, which ran out early during the process, leaving the rest of the
computation with the low efficiency normally associated with data
parallel processing. In this paper we extend the hybrid approach to
include the demand-driven scheduling of shadow ray tracing. We
also envisioned a further increase of the total processing load by
using the ray tracer Radiance [20] that can also sample the diffuse
inter-reflection. However, this aspect is, due to the severe demands
on memory, not yet part of the work reported here.

In the next sections our hybrid scheduling algorithm is presented.
It discusses task and data management techniques employed within
our parallel Radiance implementation, as well as the implications
of sampling diffuse inter-reflection and tracing area light sources



on the parallelisation. The current implementation and its perfor-
mance are assessed in sections 6 to 8 and finally in section 9 the
relevant conclusions are drawn. More elaborate overviews of dif-
ferent scheduling techniques for parallel rendering can be found
in [4, 2, 15].

2 HYBRID SCHEDULING

As indicated in the previous section, the scheduling technique pre-
sented in this paper is of the hybrid variety and its implementation
is similar to the one in [16]. This section briefly discusses the es-
sentials of that algorithm, as well as the differences with our current
implementation.

The algorithm consists of a demand driven part and a data paral-
lel part. Each processor handles both types of tasks, but gives data
parallel tasks a higher priority. This ensures that no new tasks are
requested from the master as long as tasks are still available. This
mechanism automatically balances the load. Obviously, enough
computationally intensive demand driven tasks should be available
to balance the load right until the end of the computation.
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Figure 1: Pyramid clipping is an efficient data selection algorithm.

Besides a high workload, demand driven tasks should need rel-
atively little data, so that scheduling such tasks does not involve
an excessive amount of data communication. Our approach to ac-
complish this uses a screen space subdivision to generate bundles
of primary rays. Prior to the execution of such bundles, it is nec-
essary to establish whether all the required data is available. This
data selection is implemented using a process called pyramid clip-
ping [22]. A pyramid is constructed around the bundle of rays and
it is intersected with the spatial subdivision structure, resulting in
an in depth order sorted list of voxels which contain the objects that
are needed to complete the task (figure 1). This list is then used to
fetch any missing objects.

Next to primary rays, shadow rays (assuming area light sources)
form bundles which can be handled together instead of separately.
The same pyramid clipping algorithm can be applied to these rays
to find a small subset of data which is valid for all the rays in the
bundle and thus creating a suitable demand driven task.

Reflected and refracted rays do not exhibit sufficient coherence,
making it difficult to predict which data will be necessary to trace
them. In order to avoid having to communicate large quantities of
object data, incoherent ray tasks are migrated between processors.

Primary rays are scheduled demand-driven to any processor that
requests for work. A processor that executes a primary ray task, will
also execute the (primary) shadow rays. Specular reflection and dif-
fuse inter-reflection rays are initiated by the same processor but are
further processed in a data parallel way. Subsequently these are
transferred to the processors that store the (possibly cached) cells

that they traverse. After finding an intersection, secondary shadow
rays are processed either locally or returned to the first processor
for demand-driven processing, thus avoiding local hot spots. This
latter task is the main component in our demand-driven scheduling
(see also section 5). Finally, the shading of intersection points al-
ways takes place with the processor that found the corresponding
intersection point. See figure 2 for an example of a primary ray and
its descendants.
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Figure 2: Example showing which processors execute which tasks.

In summary, this hybrid scheduling approach features an auto-
matically balanced load by assigning demand driven tasks to pro-
cessors that are not busy executing data parallel tasks. Data commu-
nication is minimised by migrating incoherent tasks, while the de-
mand driven component should require sufficient computer power
to last until the end of the computation and thus minimise idle time.
This is accomplished by treating both primary and shadow rays as
demand driven tasks (the latter was not yet implemented in [22]).

3 DATA DISTRIBUTION

Ideally, a data distribution should be such that each partition attracts
more or less the same workload, while minimising the amount of
(data) communication. The memory requirements for each parti-
tion should be more or less the same as well. Our data distribution
is generated according to a cost function applied to all the cells of
an octree. In our initial implementation, the objects in the leaf cells
are counted, while the cells higher in the hierarchy have a cost func-
tion equal to the sum of the cost functions of their children. Once
the cost function for the octree is known, the tree is split as near
to the root as possible into partitions which will reside at differ-
ent processors. The resulting distribution therefore adheres to the
equal memory requirement. More elaborate schemes which take
into account all of the above requirements, are currently under in-
vestigation [17].

A second data distribution, which may be regarded as a worst
case scenario, would be to have one processor keep the entire scene
description, while all the other processors have just the empty oc-
tree. This scheme is used to assess the load balancing capabilities
of the hybrid scheduling algorithm by artificially placing a hot-spot
at one processor. This processor will initially attract all the data
parallel rays, while at a later stage, when sufficient objects have
been cached elsewhere in the system, the data parallel workload
should even out more. However, data fetches necessary to execute
demand driven tasks, will all involve this single processor. Both
object counting and worst case data distributions are evaluated in
section 7.

Given these data distributions, the data parallel part of our hy-
brid scheduling algorithm is in place. Each processor will store the
entire octree, but only the cells assigned according to the data distri-
bution, will actually contain geometry data. Replication of internal



octree nodes and distribution of scene data is similar to the data
distribution described in [18].

When a processor receives data from a remote processor to han-
dle a demand driven task, the objects will be cached in the oc-
tree. The data structure will therefore remain a single unified oc-
tree for each processor, despite having cached data. Each octree
cell stores additional information indicating whether the data con-
tained within is cached or not, and which processor contains the
data permanently. Storing cached objects in the octree has the ad-
vantage that these objects can be transparently accessed for han-
dling data parallel tasks as well as demand driven tasks. A least
recently used (LRU) cache replacement policy is invoked whenever
memory overflow is detected. When this happens, some perfor-
mance is lost, but at such moments any system is more concerned
with survival than with efficiency. Implications on memory usage
are discussed further in section 8.

4 DIFFUSE INTER-REFLECTION

As our parallel implementation is based on Radiance, there is an
additional challenge in the form of diffuse inter-reflection. This
involves constructing a hemisphere around each intersection point
and shooting diffuse inter-reflection rays into each direction [21]
(figure 3). Sampling a hemisphere would indicate that on average,
half the scene is sampled. The potentially huge amount of data
required for this task implies data parallel rendering.
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Figure 3: Types of ray within a complete ray tracer (left section).
Sampling a hemisphere or interpolating between previously sam-
pled ones depends on position (right section).

When, for diffuse inter-reflection rays, one of the termination cri-
teria is reached, no more diffuse sampling is performed, but shad-
ows as well as specularity are still tested. This accounts for the fact
that despite the large number of inter-reflection rays, the number of
(coherent) shadow rays is still larger. The ratio of demand driven
work to data parallel work is therefore still in favour of the demand
driven component.

As the cost of sampling diffuse inter-reflection is huge, once
a hemisphere is sampled, its result is stored in an irradiance
cache [21]. When sufficient data is collected, for new intersection
points the cached values will be interpolated, rather than shooting
a new hemisphere (figure 3). This saves an enormous amount of
computation, but relies on new hemispheres being shot after previ-
ous ones have been completed. In our parallel ray tracer, this leads
to subtle data dependencies, which reduce performance, as the pre-
vious hemisphere computation may not yet be complete before a
decision to possibly interpolate is required. There seem to be two
options to circumvent this issue. The first is for each processor to
sample at most one hemisphere at a time. This would lead to extra
idle time, as the arrival of shading results depends on the workload
of other processors.

The other option is to take the extra amount of work for granted
and shoot multiple hemispheres. Extra work is performed, because
inter-reflection rays that would otherwise be interpolated, are now

traced. This provides an extra workload which would not be gener-
ated in the sequential algorithm. Currently, sampling diffuse inter-
reflection is an issue under investigation.

5 AREA LIGHT SOURCES

Area light sources are usually subdivided into patches, where a (jit-
tered) ray is shot towards each of the patches. The shadow rays then
all originate from the same intersection point and travel towards ad-
jacent patches (figure 3). Coherence implies that such a bundle of
rays probably needs only a small subset of the data which can be
easily determined using the pyramid clipping algorithm [22].

The main difference between primary ray tasks and shadow ray
tasks, is that the latter can be generated by any processor, while
primary ray tasks are always distributed by the master processor.
In order to determine the processor which should receive the pri-
mary ray task, some additional scheduling needs to be performed.
Scheduling demand driven tasks would be straightforward if each
processor were aware of its workload relative to all the other pro-
cessors. However, this would involve broadcasting status reports to
each of the other processors on a regular basis. In order to avoid
this overhead, a number of alternative scheduling techniques is pro-
posed.

First of all, each processor that generates a demand driven task,
may execute the task as well (in the example in figure 2 step E
would be executed by processor 1). This has the advantage that
there is no additional task communication, although data may still
have to be fetched. Unfortunately, keeping tasks local means that
if one processor becomes a hot-spot, it cannot offload a number of
tasks to less busy processors. If many diffuse inter-reflection rays
are to be computed, the data parallel component of our algorithm
will then lead to a load imbalance which is not resolved by keeping
shadow tasks locally.

Alternatively, processors that create demand driven shadow
tasks, could send these to the master processor which will then allo-
cate them to the first processor that requires more work. Dependent
on the number of shadow tasks created, the number of processors
asking for work and the size of the object cache, this may lead to
a communication bottleneck with the master processor. If diffuse
inter-reflection is sampled, then this method should properly bal-
ance the workload.

Finally, one method of scheduling is to execute the shadow tasks
at the processor that spawned the primary ray leading up to these
tasks. This increases the size of the demand driven primary ray
task and offloads work from the processor that owns the intersected
patch (processor 1 in figure 2). In this way the master processor
still schedules shadow tasks, although indirectly.

6 IMPLEMENTATION

The techniques discussed in this paper are implemented in Radi-
ance [20], while the communication is handled using PVM [7].
This ensures that the software runs on a wide variety of platforms,
and may thus be useful to a large user base. In the current parallel
implementation, we have maintained the full functionality of Radi-
ance, except that there is no super-sampling for primary rays. For
the moment we also had to defer using diffuse inter-reflection, due
to memory use.

All the tests in the next sections are performed on a Parsytec CC
with 32 nodes consisting of a 133 MHz PowerPC 604 and 96 MB of
memory. Our tests have shown that about 64 MB per node is avail-
able to the user. Communication is handled via a network with a
maximum sustained speed of 27 MB/s. Each node runs the PARIX
operating system with a homogeneous version of PVM, called Pow-
erPVM. This version of PVM is optimised for speed and a small



memory overhead is reported. Latency and throughput are good for
communication between neighbours in the network, but for global
communication the throughput is much worse and especially set-up
times are in the order of seconds [9]. For this reason, our applica-
tion employs a message buffering scheme which uses PVM buffers
to collect tasks into larger messages [14]. This reduces communi-
cation overhead substantially for less important tasks. Tasks that
require speedy delivery are sent quicker.

The most important tasks are those that involve data fetches (re-
questing and sending the data). These are sent as soon as a data item
is needed, i.e. the bundling is effectively disabled for these mes-
sages. The second most important type of messages are shading
results. These messages need to be communicated fairly quickly,
because upon arrival they result in freeing up memory. After that,
all data parallel tasks have a yet lower priority, but not as low as all
demand driven tasks. The relative priority given to data parallel and
demand driven tasks is the key to achieving load balancing within
a hybrid scheduling algorithm.

Unfortunately, it appears that PowerPVM does not allow a grace-
ful exit when memory for one of the processors overflows. This
may occur during runs where the load is particularly unbalanced,
causing one processor’s input buffer to overflow. For this reason
we were forced to limit the size of the model to just over 1 MB,
leaving about 3 MB for caching and storing intermediate results
and a sizeable amount of memory for input buffers. Also, instead
of rendering larger models to test the algorithm’s behaviour when
relatively small subsets of data are stored with each processor, we
have opted to reduce the size of the object cache while keeping the
scene constant.

Object statistics Studio Conference
Total number of objects 5311 3951
Primitives 4606 3737
Instances 0 6151
Materials and textures 705 214
Octree statistics
Leaf nodes 25733 8667
Internal nodes 3676 1238
Object references in octree 51925 29569

Table 1: Statistics for the scenes and their spatial subdivisions. Ob-
ject references indicate the number of pointers from the octree to
objects. If an object intersects more than one voxel, it will be
pointed to by more than one voxel.

7 PERFORMANCE

The results presented in this section all pertain to the studio model,
with only a few results replicated for the conference room model
(figure 4 and table 1) to verify that the results are not scene-depen-
dent, but indeed measure the behaviour of our algorithms. Image
resolution was5122 pixels and other parameters include soft shad-
ows, but no diffuse inter-reflection. All optimisations such as adap-
tive super-sampling have been switched off, with the exception of
optimisations involving shadow rays. Shadow rays are therefore
sorted according to their contribution to the shading result and the
least important ones are approximated without tracing [19].

The next section discusses efficiency issues for the case when
the cache for storing objects for demand driven tasks is sufficiently
large. The most appropriate scheduling technique for this case is to
keep shadow tasks with the processor that generates them. When
the size of the object cache is artificially reduced, simulating the
case when the scene cannot be replicated, the scheduling mecha-
nism becomes more important. This case is investigated in sec-
tion 7.2.

Figure 4: Studio model (left) and conference room (right).

7.1 Speed-up and efficiency

Speed-up graphs for our algorithm are presented in figure 5. When
measured with respect to the one processor parallel case, the graphs
indicate good scalability. Although this is a common way of mea-
suring speed-up, we have also included fair speed-up graphs, i.e.
with respect to the sequential algorithm. From these graphs, it can
be learned that a significant overhead is incurred, most of which is
processor independent, as argued below. Correcting for this over-
head, i.e. computing the efficiency by taking the total rendering
time and subtracting the time spent in overhead routines, a different
picture emerges. The efficiency is then around 64% for one proces-
sor and further reduced to about 55% for sixteen processors (fig-
ure 6). The conference room model scores better with an efficiency
of between 84% and 73%.

Given the rendering parameters used, computing the same im-
ages with the sequential algorithm takes 5.02 hours (18072 s.) for
the studio model and 23.78 hours (85611 s.) for the conference
room. The long rendering time is mainly due to the sampling of the
rather large area light sources. Our measurements on the parallel al-
gorithm indicate a slightly higher workload of 5.46 and 25.88 hours.
The main reason for this is that this workload includes the cost of
performing timing measurements and instrumenting the code (the
results of which can be seen in figures 6 to 11). The speed-up graphs
produce a nearly straight line up until the maximum of 32 proces-
sors, indicating good scalability. The performance loss due to par-
allelising the algorithm has a number of different reasons.
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Figure 5: Speed-up graphs for the studio and conference room mod-
els with respect to the one processor parallel case and the sequential
algorithm (fair).

First of all, data selection, necessary for establishing which data
is required for demand driven tasks, constitutes a significant over-
head (figure 7). The total amount of time spent in the pyramid clip-
ping routine depends on the number of demand driven tasks cre-



ated, and is therefore not dependent on the number of processors.
The number of shadow rays shot per light source determines the ef-
ficiency of the pyramid clipping algorithm. In the studio model, the
light sources are relatively far away and can therefore be sampled
with relatively few shadow rays. Hence the pyramid clipping al-
gorithm begins to dominate the efficiency of the computation. The
conference room has a geometry such that the light sources are quite
close to the objects they illuminate. Therefore, the number of vox-
els between any intersection point and the light sources is small.
This makes pyramid clipping relatively cheap. Also, this closeness
accounts for the fact that a much larger number of shadow rays is
shot to account for soft shadows. For this reason the efficiency of
the rendering is much higher.

The second most important form of overhead is idle time, which
is mainly introduced by waiting for data for demand driven tasks
and lack of new tasks at the end of the computation (figure 8).
Waiting for data, rather than starting a new demand driven task,
reduces storage requirements. As memory is not available in un-
limited quantities, we have chosen to accept some idle time. The
distribution of idle time over the different processors appears to be
uneven, but this is due to starvation at the end of the computations.
Otherwise, idle time is suffered by all processors in equal amounts.
This indicates that hybrid scheduling is indeed capable of providing
an even load. Idle time near the end of the computation could be
reduced by distributing smaller tasks when some processors nearly
run out of work.

As our implementation shows a rather substantial idle time when
fetching data, which can be attributed to the long start-up time for
communicating under PVM, we have looked into ways to improve
the message bundling scheme (as discussed in section 6). For data
fetches we modified the algorithm to only send requests for data af-
ter finishing pyramid clipping for a shadow task, rather than send-
ing a request whenever an object was needed. This delayed sending
the first request for data, but at the same time reduces the number
of separate messages. Measured on 32 processors for the studio
model, this modification resulted in an efficiency improvement of
3.8% which was due to a reduction in idle time by 17% and a re-
duction in task communication time of 86%1.

Task communication (figure 9) and data communication for de-
mand driven tasks (figures 10 and 11) appear not to be bottlenecks
within this algorithm. The times reported for sending and receiving
object data are currently negligible, but these are likely to deterio-
rate when larger scenes are considered. Then, the entire scene will
cease to fit into a single processor’s memory and therefore objects
are likely to be fetched more than once. It appears that it is possible
to increase the number of object communications quite drastically
before it starts to dominate the computation.

Figure 11, depicting how much time each processor spends send-
ing data to other processors, gives an indication of the success with
which the scene data was initially distributed. Only five proces-
sors are ever requested for data, which suggests that the scene was
unevenly distributed (an even data distribution would equalise the
number of object requests over all processors). This graph coin-
cides with our initial data distribution, which indicates that our
caching scheme currently removes these processors as hot-spots.
When very large scenes are to be rendered, investing more work
into finding good initial object distributions would be worthwhile,
as in that case caching alone would not be sufficient. Note also that
the more processors that participate in the calculations, the easier
it is to find an even object distribution. This is especially true for
scenes that have an uneven object distribution over space (such as
the studio model).

1Note that the speed-up graphs in figure 5 are based on results without
this improvement.

7.2 Scheduling and caching

If all the objects that are required to complete a demand driven
task, can be stored in memory, without having to replace previ-
ously cached data, the hybrid scheduling algorithm resembles a de-
mand driven approach. No special scheduling is required to keep
the workload balanced, other than the distribution of demand driven
primary ray tasks. Shadow rays can be effectively computed by the
processor that spawns them. However, when the size of the object
cache is reduced, so that only a portion of the entire scene descrip-
tion fits, the capability to perform demand driven tasks is reduced.
Rays that can not be entirely executed in demand driven fashion,
need to resort to data parallel scheduling. If the object cache be-
comes smaller and smaller with respect to the total scene size, the
amount of data parallel work grows, making the hybrid scheduling
algorithm resemble a data parallel approach.
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Figure 12: Rendering time (in seconds) on 8 processors for the
studio model at1282 pixels for different object cache sizes and
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For cases where only part of the scene can be cached, the way
demand driven shadow tasks are scheduled, is important, as can
be seen in figure 12. Here, the studio model is rendered on eight
processors using a reduced problem size (128

2 pixels). The three
scheduling methods discussed in section 5 are compared with each
other and with a simple round robin scheme for the distribution of
demand driven shadow tasks. If the cache size is not artificially
clamped to a fixed value, seven processors need just over 1 MB to
store non-local objects each plus 200 kB for their resident sets. The
uneven initial object distribution for this scene awards one proces-
sor 1.25 MB initially, so that virtually no objects are fetched for this
node. This processor becomes the bottleneck in the experiments
discussed below.

As the cache size is reduced, the load balancing capability is
maintained best by the algorithm which reroutes all shadow tasks
via the master. Round robin scheduling also seems to distribute the
workload, although far less successful. This is because this tech-
nique does not distinguish between heavily loaded processors and
less busy ones. There seems to be no significant difference between
scheduling shadow tasks with the processor that spawned the ray
tree and using no scheduling at all. Both break down to the extent
that a processing bottleneck is created with one processor, causing
input task queues to overflow when the object cache size is made
sufficiently small. This problem becomes worse when the workload
is increased by rendering larger images.

When tasks are scheduled through the master, the total render-
ing time can be broken down into its component parts, as shown in
figure 13. The computation time is almost completely dominated
by idle time, which is equally shared by all but one processor. The
idle time is also spread evenly over time, showing that one pro-
cessor becomes the bottleneck which dominates the computation;



behaviour normally associated with data parallel approaches. This
is no surprise, as the cache size becomes too small to complete most
demand driven shadow tasks. Hence, the data parallel component
gains in significance, without the demand driven part being capable
to combat its associated load imbalance. Injecting more work into
the system would not solve this problem, because this would result
in more rays being transferred to the overloaded processor as data
parallel ray tasks.
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Figure 13: Rendering time (in seconds) on 8 processors for differ-
ent aspects of the algorithm (studio model at128

2 pixels). Shadow
tasks are rerouted through the master. “Total” represents the total
rendering time, while the other times are average times per proces-
sor.

In summary, the one scheduling method which uses global infor-
mation (by rerouting all shadow tasks through the master processor,
which distributes these tasks on demand) maintains an even work-
load best when the cache size is reduced. This is also true for larger
problem sizes (we tested this scheduling technique for512

2 images
and found similar results). Unfortunately, this method is inherently
not scalable with the number of processors. These results indicate
that scheduling techniques need to be developed which incorporate
global information regarding the load.

Finally, our hybrid scheduling algorithm sits inbetween demand
driven and data parallel execution modes, both in concept and be-
haviour. Therefore, the cache chosen should therefore not be cho-
sen too small, as this would kill the efficiency. On the other hand,
choosing the cache size too big would turn this into a demand driven
algorithm, for which pure implementations have proved to give best
performance. Hence, the size of the scenes that can be rendered
with some degree of efficiency should be larger than with demand
driven algorithms, whereas increasing the scene size further will
result in performance comparable to data parallel approaches.

8 MEMORY

Besides storage space used for caching objects, memory is required
for temporary storage of intermediary results and task queues etc.,
requiring an additional memory overhead. This extra memory con-
sumption should be less than the memory saved by distributing the
scene.

In our implementation there are a number of areas which take
up storage space, which include: memory occupied by the octree
and a subset of the objects; storage of intersection points for which
shading results are pending; and memory taken by storing a task
queue for demand driven tasks that are waiting for object data to
arrive. Depending on the workload balance, the buffers used by
PVM to hold incoming messages take up a significant amount of
memory as well. If we examine the case of the studio model for a
rendering performed on 16 processors using an object cache which

is large enough to fit all data that is requested, its memory break-
down is presented in table 2.

Table 1 shows that the number of references from the octree to an
object is significantly higher than the total number of objects in the
scenes. This is a common, but often overlooked feature of octrees.
However, it does have an impact on the storage requirements of the
octree itself.

Memory type Maximum
Intersections 266 kB
Shadow tasks 207 kB
Pyramid clipping 14 kB
Primary ray tasks 96 kB
Cached objects �1 MB
Objects 268 kB
Octree 922 kB

Table 2: Memory usage for processor 1 (of 16). These figures are
typical for all processors during these renderings.

Intermediary results require a modest amount of storage space.
These results are stored while shading results are pending, which
may be longer if the data parallel part is more prominent. For512
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pixel renderings of the studio model on 8 processors, the maximum
amount of memory used during the computation (including all dy-
namically allocated memory, but excluding memory used for input
buffers and memory allocated during start-up) ranges from 1.3 MB
for an unlimited object cache size to 982 kB for a cache of 400 kB.

Dependent on the significance of the data parallel component,
for example in the presence of diffuse inter-reflection or when many
shadow rays need to be migrated due to a small object cache, a con-
siderable amount of memory is taken by PVM’s input buffers. This
may easily cause one processor to run out of memory. As mea-
suring these buffers influences the performance of the algorithm
considerably, separate measurements were taken (on 8 SGI O2’s in
this case). The processor constituting a bottleneck, has a maximum
input buffer size which ranges from 617 kB for an unlimited object
cache to 16 MB for a 600 kB cache. Clearly, the total amount of
work in the system at any one time needs to be controlled more rig-
orously than is currently the case. Therefore, scheduling needs to
be based on global information to detect if and when processors be-
come bottlenecks. Alternatively, the number of data fetches could
be increased to reduce the influence of the data parallel component.

9 CONCLUSIONS

The hybrid scheduling algorithm presented in this paper scales well
with the number of processors, although a fairly substantial amount
of overhead is recorded. This stems from the fact that most of
this overhead is not processor dependent, but remains relatively
constant regardless of the number of processors used. Due to the
required data selection, which is performed for each primary and
shadow ray task, most of the computational overhead is scene and
parameter dependent. In cases where the cost of data selection
(pyramid clipping) is greater than the performance benefit, which
occurs when too few shadow rays constitute a shadow task, it may
be better to schedule these rays as data parallel tasks. We hope to
investigate this aspect in the near future.

Idle time is mostly incurred when waiting for object data to be
sent from other processors. This can be attributed to the long set-up
times measured for global communication when using PowerPVM
on the Parsytec PowerXplorer [9]. It would be possible to prepare
more tasks while data is pending, but this would require extra mem-
ory for storing intermediary results. Slower networks tend to re-
quire more memory per node and if that is not available, then some
idle time needs to be accepted. Our application is no exception.



Algorithms which distribute scene data are targeted at rendering
large to very large scenes. The smaller the subset of the scene that
can be cached with each processor, the more our algorithm starts to
behave like a pure data parallel approach. It appears that the size
of the object cache should be at least half the scene size, restricting
the maximum size for which our algorithm retains some efficiency.
However, this is still better than can be achieved with pure data
parallel approaches. If, on the other hand, sufficient cache mem-
ory is available, our algorithm resembles a proper demand driven
solution.

Also, our current implementation has some weaknesses concern-
ing memory overhead. The most important one is the cost of storing
input buffers for reduced cache sizes. Improving efficient memory
usage is currently being investigated. Another area for improve-
ment is in finding suitable initial data distributions, so that the work-
load for the data parallel component is more even. This would re-
duce the strain on the demand driven component, especially if the
the number of objects that can be cached for demand driven tasks
is limited. However, finding a data distribution that equalises the
workload is a non-trivial task which is currently unsolved.

Finally, the results presented in this paper are partially compa-
rable to our previous results which were based on a parallel im-
plementation of Rayshade [16]. Then, the efficiency was very high
until some point fairly early in the computation after which it degra-
dated to the level expected with pure data parallel implementations.
This was attributed to the fact that only primary rays were sched-
uled demand driven. Currently, shadow tasks are handled in de-
mand driven fashion as well, which is why the efficiency remains
constant throughout the computation.
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Figure 6: Efficiency for 16 processors (studio model). The left graph shows the efficiency over time, while the right graph gives the efficiency
per processor (both graphs in %)
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Figure 7: Number of processors performing pyramid clipping overhead (left) and amount of time spent pyramid clipping per processor (right)
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Figure 8: Number of processors idle per time unit (left) and idle time per processor (right).
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Figure 9: Number of processors busy communicating per time step (left) and communication time per processor (right). These graphs include
both task and data communication. The left graph is scaled to fit the height of the image
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Figure 10: Number of processors fetching object data per time unit (left) and time spent fetching data per processor (right). Note that the
graph on the left is scaled to fit maximum height.
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Figure 11: Number of processors sending object data per time unit (right) and time spent sending data per processor (right). The left graph is
scaled to fit the height of the image.


