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Figure 1: Remote rendering allows navigating in complex scenes even on weak client hardware. But not only final images are of
interest on the client side, auxiliary information like depth or motion become increasingly attractive in this context for various
purposes. Examples include spatio-temporal upsampling (1, 2), 3D stereo rendering (3), or frame extrapolation (4). Standard
encoders (H.264 in image 1) are currently not always well-adapted to such streams and our contribution is a novel method to
efficiently encode and decode augmented video streams with high-quality (compare insets in image 1 and 2).

Abstract
In this paper, we focus on efficient compression and streaming of frames rendered from a dynamic 3D model. Re-
mote rendering and on-the-fly streaming become increasingly attractive for interactive applications. Data is kept
confidential and only images are sent to the client. Even if the client’s hardware resources are modest, the user can
interact with state-of-the-art rendering applications executed on the server. Our solution focuses on augmented
video information, e.g., by depth, which is key to increase robustness with respect to data loss, image reconstruc-
tion, and is an important feature for stereo vision and other client-side applications. Two major challenges arise
in such a setup. First, the server workload has to be controlled to support many clients, second the data transfer
needs to be efficient. Consequently, our contributions are twofold. First, we reduce the server-based computations
by making use of sparse sampling and temporal consistency to avoid expensive pixel evaluations. Second, our
data-transfer solution takes limited bandwidths into account, is robust to information loss, and compression and
decompression are efficient enough to support real-time interaction. Our key insight is to tailor our method ex-
plicitly for rendered 3D content and shift some computations on client GPUs, to better balance the server/client
workload. Our framework is progressive, scalable, and allows us to stream augmented high-resolution (e.g., HD-
ready) frames with small bandwidth on standard hardware.

1. Introduction

Server-client platforms that enable remote 3D graphics in-
teraction are of high importance in the age of mobility and
constant hardware change. By relegating rendering to pow-
erful servers and streaming of the resulting frames, the re-

quirements on the client side can be reduced to standard web
browsing and video playing abilities.

Server-client graphics platforms have many more advan-
tages, e.g., potentially huge data sets remain on the server
which simplifies maintenance, improves security, and en-
ables consistent updates in collaborative work scenarios.
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Consequently, numerous applications can benefit from this
setup. Examples include medical 3D visualization, indus-
trial and architectural design, at the spot repair of com-
plex devices (e.g., ships and aircrafts), 3D navigation and
tourism, and in particular online entertainment and gaming.
In the latter case, players subscribe to an instant access of a
large variety of games. Server-side execution makes client-
hardware upgrades, installation and software updates mostly
unnecessary. These advantages are attractive for customers,
as well as game developers that benefit from reduced mar-
keting / distribution costs and piracy risks. Not surprisingly,
a number of companies such as OnLive, OTOY, Gaikai are
committed to provide technology for game streaming.

The key problems of such an approach are the server
workload that limits scalability with respect to the num-
ber of clients and bandwidth. Particularly, standard com-
pression schemes are often expensive and introduce a long
latency. HD-ready-resolution frames need approximately 3
Megabits per second for good quality encoding using tra-
ditional streaming with H.264. However, usage of MPEG
B-frames introduces delay which is unacceptable for real-
time applications, like games. Low-delay streaming requires
more data transfer (e.g., OnLive recommends 5 Megabits or
more for HD-ready), but effects such as 3D stereo, or high
frame rates, would quickly lead to an excessive bandwidth.

Our insight is that transfer costs can be reduced by aug-
menting the stream with supplementary information, such
as depth or motion. These attribute buffers are very cheap
to compute on the server, and allow many applications when
transferred to the client, including warped 3D stereo, spatio-
temporal upsampling (super-resolution), and frame extrap-
olation. All of these benefit from the client-side execution
— 3D (acceptable disparity depends on eye distance and
device size), resolution and framerate can be optimized for
the client’s equipment or preferences. The only problem is
that such applications require high precision attribute buffers
which makes standard compression schemes difficult to ap-
ply. Our approach addresses this issue by linking render-
ing and compression, while existing streaming systems (e.g.,
Reality Server, OnLive) benefit little from the fact that a 3D
model is underlying the rendering.

While we follow the (usually valid) assumption that the
client machine is much less powerful than the server, a
pure video-streaming scenario makes almost no use of the
client’s computational capabilities. Instead we want to ex-
ploit this resource. To transfer high-precision auxiliary data
(e.g., depth) to the client, our solution uses an efficient edge
encoding and a new fast diffusion process. Consequently, on
the server, costly raytracing or per-pixel shaders are only ap-
plied to low resolution frames, that are streamed to the client
where the corresponding high-resolution frames are recon-
structed, hereby lowering server workload and bandwidth.

Precisely, our contributions are:

• Compression – an efficient scheme not relying on future
frames and a novel inter frame prediction;

• Precision – high-quality discontinuity edges to enable
spatio-temporal upsampling;

• Decompression – a novel GPU-adopted diffusion scheme
and decoding;

• Transfer – a solution to adapt bandwidth.

We illustrate the advantages of our motion-augmented video
streaming with several client-side applications (e.g., stereo
rendering, temporal super-resolution).

2. Previous Work

Only few successful attempts exist that couple 3D rendering,
efficient data compression and streaming. Cohen-Or et al.
[COMF99] and Levoy [Lev95] enhance client rendering by
streaming residuals (difference between high-quality-server
and low-quality-client frames). The server workload in-
creases because residuals require both, the client and server-
side rendering. Also, the client needs to receive a 3D scene
description. In the limit, one could stream only graphics API
calls [NDS∗08], but powerful clients are needed and server-
side rendering is impossible.

We execute scene-related costly computations on the
server. The client’s cost depends only on the image resolu-
tion. To reduce server costs, we build upon amortized ren-
dering techniques [SaLY∗08,YSL08,HEMS10]. Usually on
a single machine, we employ them in a streaming context
and let the client reconstruct the image.

We can also exploit knowledge concerning the final com-
pressed video. In the Render2MPEG framework [HKMS08],
details that would be removed during compression are not
rendered. Similarly, we can use a low bandwidth or limited
client display capabilities to reduce the server load.

One major contribution of our work is a novel depth
encoding. In particular, free viewpoint video (FVV) and
3D television [KAF∗07] (3DTV) require the so-called
multiview video (MVV) representations, which often in-
volve the depth data to warp the original video stream
to nearby virtual camera positions. Because video codecs
such as H.264 are optimized for image statistics and hu-
man perception, depth compression requires specialized so-
lutions [MMS∗09]. Many approaches smooth depth values
in order to increase compression performance [Feh04] at the
cost of crucial precision. Lossless depth compression via a
run-length like encoding [JWB04], or by integrating an un-
derlying 3D model [EWG99] might not easily meet band-
width constraints. Consequently, we aim at high accuracy,
but allow a tradeoff between quality and compression to
meet bandwidth limitations.

Precision is most crucial at depth discontinu-
ities [MMS∗09]. Edge-preserving filtering [PJO∗09]
changes depth values, but lets the encoder focus more on
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D.Pająk, R.Herzog, E.Eisemann, K.Myszkowski and H.P.Seidel / Remote Rendering with Augmented Streaming

discontinuities. Also, region-of-interest specifications and
depth-value redistribution can improve quality [KbCTS01].
Nonetheless, depth discontinuities are only handled im-
plicitly in the encoding step which can lead to significant
divergence [MMS∗09].

Merkle et al. [MMS∗09] introduced a different depth-
optimized encoding for adaptive pixel blocks (possibly sep-
arated by a single linear edge) and assign a constant or linear
depth approximation (if present for both edge sides). Fitting
the edges and constructing the representation is costly, but
leads to a quality leap. We avoid explicit optimizations and
show that we achieve higher quality with higher encoding
efficiency. We also introduce a temporal prediction which is
very effective for animated sequences.

The importance of depth discontinuities is also illus-
trated by approaches that perform joint color / depth com-
pression [MD08] because of the often strong correlation. In
similar spirit, we will rely on depth information to perform
spatio-temporal upsampling to reduce the server workload,
but instead of a semi-automatic solution [MD08], we need
an automatic and sufficiently efficient online solution.

Image encoding with H.264 is computationally expen-
sive. Half the time is used on neighborhood matching and
motion estimation [CBPZ04] that can be directly recovered
from 3D [FE09] and enable higher compression [WKC94].
In our solution, we rely on motion vectors to enable spatio-
temporal upsampling in dynamic scenes. Their high redun-
dancy [MF98] allows for an efficient encoding.

Our solution benefits from the fact that image information
is strongly correlated with discontinuities [Eld99]. Edges
can be beneficial for compression [GWW∗08], but the con-
struction and reconstruction steps are usually costly. The lo-
cality of our approach makes it efficient and ready for an
online rendering context.

3. Augmented Streaming Framework – An Overview

Our algorithm consists of several components, which are de-
picted in Figure 2. On the server side, we render a jittered
low-res. version H low

t of the current frame Ht . Avoiding the
production of a full-res. frame reduces the server workload
and saves bandwidth to be used for our additional stream-
ing data. The image H low

t is encoded using a state-of-the-art
H.264 video encoder and sent to the client who constructs a
high-res. version Ht based on the previously reconstructed
high-res. frame Ht−1. Key for this upsampling are high-
res. depth information of the current frame Dt and the mo-
tion flow Mt between the current and previous frame. Both
are cheap to compute on the server [SaLY∗08].

To efficiently transfer depth Dt and motion Mt to the
client, we rely on a customized compression scheme.
We detect discontinuities that define edges on the server
(Sec. 3.1). The edges and their depth and motion values
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Figure 2: Outline of the proposed streaming architec-
ture. Green markers indicate the computation order within
a frame cycle.

(Dedge
t ,Medge

t ) are encoded rapidly using previous informa-
tion (Dt−1,Mt−1), then sent to the client. The client recon-
structs a high-res. depth Dt and motion flow image Mt by
diffusing the sparse edge information (Sec. 3.2), hereby ex-
ploiting smoothness of the signal between discontinuities.
The client computes the final image Ht using the low-res.
image H low

t , the depth, and motion flow (Sec. 3.3).

Our compression scheme outperforms state-of-the-art en-
coders (Sec. 5) and enables a high-quality spatio-temporal
reconstruction. We propose a bandwidth control based on
a perceptual metric (Sec. 3.4) and provide implementation
details of our low-level encoding process (Sec. 3.5). The rel-
atively accurate depth Dt and motion Mt data, enable many
applications on the client side that were difficult to achieve
with previous encoding strategies (Sec. 4).

3.1. Server-Side Preparation

It is very cheap to produce high-res. attribute buffers (depth,
surface normal, motion, and texture) which is typically done
for deferred shading. The main server cost stems from pro-
ducing the final shaded image, especially when using ray
tracing. Using a lower resolution image H low

t leads to a per-
formance gain. We then stream H low

t via H.264.

A H.264 codec is not optimal for high-res. depth Dt and
motion Mt whose precision is crucial for the client-side up-
sampling that transforms H low

t into a high-res. high-quality
output Ht . Also other applications (Sec.3.3) would suffer.
In contrast to standard image information, depth or motion
have little visual meaning and traditional video-coding (e.g.,
MPEG) is perceptually-tuned. Instead, discontinuities in the
attribute buffers should be preserved, while precision can be
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lowered for the remaining image. E.g., frame extrapolation
with a low-quality motion flow will be most perceivable at
contrast-discontinuities or region boundaries [SLW∗08]. We
will show that Dt and Mt can be compressed and streamed
efficiently by relying on a customized edge-based compres-
sion and client-side reconstruction via diffusion. The result
closely resembles the original on edges and smoothly inter-
polates between them.

Edges are detected from all attribute buffers. One could
use a gradient-based edge detector, but it often fails in prac-
tice. E.g., a flat surfaces seen at a grazing angle is de-
tected as discontinuity. Instead, we rely on a Laplace oper-
ator. For performance reasons, we detect edges from depth
and motion-flow buffers only. A weighted sum of responses
from all buffers yields pixel significance. Predefined thresh-
old selects significant pixels, the so-called edge samples (in
Sec. 3.4, we show how to improve upon this ad-hoc thresh-
old). To avoid missing low frequency changes, we also uni-
formly add one sample every 32×32 pixels.

We do not define curves explicitly and only select edge
samples, but a Laplacian detects edge structures (Fig. 4)
well. Further, it always extracts two-pixel-wide edges. Con-
sequently, we keep two values, one for each side along the
discontinuity. Only in this setting, a diffusion process can
reproduce the discontinuity. Besides depth and motion, we
store the sign of the Laplacian detector (zero-crossing of 2nd
derivative) because — almost always — neighboring pixels
with the same sign also lie on the same surface. This infor-
mation will be used to improve the compression efficiency.

3.2. Client-Side Reconstruction via Diffusion

The client receives a low-res. shading image, and edge-based
representation including values for depth and motion. In this
section, we propose a fast diffusion scheme used to recon-
struct high-res. depth and motion information.

The basic idea of our method is a push-pull mecha-
nism [GGSC96]. The goal of the push step (Fig. 3, grey) is
to fill holes by reducing resolution. We create a pyramid-like
image representation by successive downsampling:

D(x,y) =

I(2x,2y) ,w(2x,2y) > 0
∑x′ ,y′∈N2x,2y

w(x′,y′)I(x′,y′)

∑x′ ,y′∈N2x,2y
w(x′,y′) ,w(2x,2y) = 0

(1)

where Nx,y = {(x−1,y−1),(x−1,y+1),(x+1,y+1),(x+
1,y− 1)} stands for a local neighborhood, I is the edge-
based image and w contains binary weights which are set to
1.0 for edge samples, and 0.0 for empty pixels. This opera-
tion extends the edge samples by one pixel in each level and
holes are quickly filled. Due to the uniform edge samples
(one sample per 32×32 pixels), five levels of the pyramidal
downsampling are sufficient to entirely fill the top image in
the pyramid.

After the push step, we use a pull operation (Fig. 3, or-

1. Push step

2. Pull step

diagonal di�usion   vertical/horiz. di�usion

Figure 3: Our diffusion scheme. Samples stored on both
sides of an edge are spread over the image in two stages.
1) Push phase: downsample image (yellow rectangles). Try
to fill empty (green) samples by averaging diagonal neigh-
bours. 2) Pull phase: coarse level images fill in holes in finer
scales. First, transfer copied values (previously yellow, now
red rectangles). Fill empty pixels (blue rectangles) by aver-
aging diagonal, then adjacent samples.

ange) to propagate the filled hole back to the high-res. image.
In a top-down manner, coarse-level samples are “pulled”
back to their corresponding position in the finer level. We do
not overwrite existing fine-level values as these were defined
during the push step and are thus based on a more-precise
higher-resolution image. The push step kept even pixel val-
ues, consequently, during the pull step, we only transfer val-
ues from these even pixels (red squares). The remaining pix-
els of the current pyramid level are filled in local diffusion
steps (we apply a diagonal (cyan) then axis-aligned diffusion
which performed best in our tests).

To further improve the smoothness of the output surface,
similar to multi-grid methods, one can apply a pre or post-
smoothing step on each level in the pull stage. A single Ja-
cobi iteration reduces local diffusion errors, but also slightly
increases the average approximation error. Compared to
standard push-pull, our diffusion has reduced anisotropy
(due to quincunx lattice sampling scheme) and respects
edges. Additionally, we process screen-space linear input
and therefore diffuse in a perspective correct way.

3.3. Client-Side Spatio-Temporal Upsampling

Having all data available on the client, the final high-
res. shaded image needs to be constructed. One could sim-
ply scale the low-res. shaded image H low

t to the screen res-
olution, but then the quality would be poor. Instead, one
can significantly improve quality when performing a spatio-
temporal reconstruction (following [HEMS10]).
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Figure 4: Depth buffer edge-diffusion error visualization. Input edge image (left) has been processed with selected “inpainting”
algorithms. Our method provides quality comparable to PDE solvers, yet it is much less computationally intensive. Also, it has
the smallest relative error of approximation, which is particularly important for our problem. Measured PSNR: push-pull:
36.45dB, 2nd generation wavelets: 48.47dB, PDE: 52.42dB, our method: 52.49dB.

To reconstruct the final image, the client relies on the re-
constructed attribute buffers of the current frame: depth Dt
and motion flow Mt . Using Mt , pixels in the current frame
can be projected back into the previous high-res. frame Ht−1
which is still present on the client. As in [HEMS10], a bilat-
eral weighting scheme (screen position, depth, and distance
to the samples in H low

t ) attributes weights to the pixels in the
temporal and spatial neighborhood in Ht−1 and H low

t . The
weighted sum defines the current frame Ht .

Disocclusions (pixels in Ht whose corresponding sample
was either outside the viewing frustum or occluded in Ht−1)
need to be considered in the weighting scheme. In this case,
no reliable information exists in Ht−1 and non-zero weights
are only attributed to pixels in the current frame H low

t .

The complete spatio-temporal upsampling is more com-
plex than described, e.g., illumination gradients are used
to treat dynamic lighting. The interested reader is referred
to [HEMS10]. In particular, the server creates jittered frames
that ensure a convergence to a high-quality rendering for
static elements. The major difference is that we do not use
normals to reduce bandwidth. We counteract this restric-
tion with a twice bigger spatial reconstruction kernel for
higher accuracy. This larger support is possible because of
our streaming context: the client avoids the scene rendering
and offers many unused resources.

3.4. Scalability

In an online rendering context, it is important to adapt the
bandwidth dynamically. One could adapt the resolution of
the rendered video stream effectively, hereby changing the
upsampling ratio, or reduce the frame rate by making use
of temporal upsampling (see Fig. 1) on the client. While the
previous measures have a strong impact on the bandwidth,
but also quality, one can also control the bandwidth/quality
tradeoff on a finer level in the edge encoder.

When many edges arise from the discontinuity detec-
tion, our encoding becomes sub-optimal. Fortunately, not all
edges are needed. “Edge importance” strongly relates to the
perceptual contrast in image Ht . The more cluttered an im-
age region becomes, the less precision is needed due to per-
ceptual masking effects. Hence, we would like to weight ge-
ometric edges according to “visual importance”. However,

0 0.40.2

Figure 5: A complex frame and the visual significance of
its edges (dark blue=imperceivable, red=clearly visible). To
meet bandwidth constraints, we favor important geometric
edges. Note the small edge importance in the tree, which is
dominated by visual masking.

since this computation is executed on the server, we want to
avoid high costs, therefore we focus on the available low-
res. rendering H low

t . Consequently, masking thresholds are
computed via the GPU only for coarse scale edges on low-
frequency bands of a Gaussian pyramid.

Precisely, we convert the low-dynamic-range image H low
t

to linear luminance (we ignore isoluminant chroma edges)
and build a Gaussian pyramid. Using a Sobel filter, we com-
pute the magnitude cl(x) of the gradients in each level. These
gradients are analyzed for visual masking with a contrast
transducer borrowed from JPEG2K [ZDL00]:

Rl(x) =
|cl(x)|0.6

1.0+∑i∈N8(x) |cl(i)|0.2 , (2)

where N8(x) is the eight-pixel neighborhood around pixel x
in each pyramid level. The apparent contrast map R(x) is the
sum of the band responses Rl(x) (Fig. 5). The final edge im-
portance that guides the edge-sample selection, is computed
by multiplying R(x) with the weights derived from the at-
tribute buffers. Further, we blend the edge weights with the
motion-compensated edge weights of the previous frame to
enforce temporal coherence and reduce edge flickering.

By exploiting the new edge weighting, we can achieve
a constant bit rate control (CBR) by increasing/decreasing
the number of edge pixels. To this extent, we vary the edge
thresholds by a rate control factor, which exponentially con-
verges to the desired target bit rate. Furthermore, although
not needed in our tests, one can increase/decrease the edge-
data quantization (see Sec. 3.5).
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3.5. Stream Compression

We showed how the edge-based representation allows us to
transfer high-quality high-res. images, but, for this transfer
to be efficient, we need to encode the data properly. This sec-
tion explains our efficient compression technique. We pursue
two goals: a fast encoding and a good compression.

We encode two elements, first, a binary image defining the
existence of edge samples (1=edge sample, 0=empty); sec-
ond, the edge-sample values that are stored in these pixels.
The binary image compresses well and defines a topological
layout. Edge-sample values (such as depth, motion-flow or
edge laplacian “sign”) are then stored in scanline order and
the binary image allows us to attribute the values to their
original image locations.

Binary Image encoding One of the most effective schemes
for lossless binary image encoding is JBIG2 [TUITU99]. It
employs adaptive binary arithmetic coding [WNC87] to re-
duce the size of the resulting bit-stream. Unlike Huffman
coding, arithmetic coders can output symbols occupying less
than 1 bit on average. Such high compression ratios are pos-
sible by modeling probabilities (symbol frequency tables)
based on the spatial neighborhood of the encoded charac-
ters. The adaptivity of the scheme ensures that more frequent
symbols will require less bits to encode. This higher-order
modelling is especially suitable for compression of images
showing regularly structured elements (e.g., fonts, simple
shapes). Usually the spatial neighborhood consists of previ-
ously encoded pixels (assuming scanline traversal) – the val-
ues beyond the encoding position will not be available to the
client when performing the decompression. For binary edge
images, this restriction resulted in lower efficiency. Further,
JBIG2 was designed for still image compression, whereas
we want to exploit inter-frame coherence and temporal pre-
diction. Therefore, we propose a different approach.

To improve the intra-frame compression, we split the bi-
nary image into four interleaved sets of pixels. During the
first pass, we predict values using only previous pixels, but
from the second pass on, pixels extracted from previous runs
are available. For any compression position, we can thus rely
on pixels that lie in the “compression future” (Fig. 6, pass
1–3). Intuitively, we can better predict where edges lie in the
image. For edge-only images, samples from different passes
show a high spatial correlation (Fig. 6, pass 3). The impact
on the compression efficiency is significant. In practice, the
first pass uses approx. 50% of the file size, while all three
following passes are squeezed in the remaining 50%. In con-
trast to a standard JBIG2 encoding, our intra-frame scheme
generates 25% smaller frames on average.

To exploit inter-frame coherence, previous-frame samples
are added to the current sample encoding context by warping
the previous frame into the current view. Any warping strat-
egy would work, but we use the fast solution we also employ
for stereo rendering (Section 4). We can then access values

FUTURE

1 1 1
0

0

0

0
x1

FUTURE

2

2 2 2

x
1

0 0
1

FUTURE

x
22

2 2

0

0
1 1

x0

0 00

FUTURE
Pass 0 Pass 1

Pass 2 Pass 3

0
2

31
4

warped previous frame

x
FUTURE

0
12 3 546 7

current frame

1

2
Figure 6: Compression prediction schemes. 1) Spatio-
temporal contexts for edge-image compression. To com-
pute probabilities for sample ’x’, a 9-neighbor spatio-
temporal context is used, choosing from current pass, pre-
vious pass (numbered pixels) or the motion-compensated
previous frame (green pixels). Combining values from these
various origins keeps the prediction rates high. 2) Spatio-
temporal value prediction. We select two potential predic-
tors for current sample (purple cell in current frame): one
from current and the other originating from warped previous
frame. Candidates are chosen from a fixed neighborhood set
(yellow cells). The first neighbor that matches the current
sample’s sign is selected as the “best” predictor.

of the previous frame during en- and decoding (green pixels
in Fig. 6). Depending on the quality of the warped frame,
this context extension increases compression ratios between
1.2 and 7 (on average 2.5).

Edge-Sample Values To encode the edge-sample values
(depth, motion vectors), we make use of the binary image.
Basically, we group all edge-sample values in scanline or-
der and compress this number stream. To reduce data en-
tropy, we first apply a spatio-temporal predictor. The result-
ing residual stream is entropy coded before being sent.

Precisely, during the prediction step (Fig. 6, 2), we find
a value that best matches the currently encoded sample. We
assume that such a value will exists in a close spatial neigh-
borhood and most likely will belong to the same geometric
surface (same sign of the Laplacian operator). The residual
is then computed by subtracting the match from the current
pixel value. As depth discontinuities are highly correlated
with motion discontinuities the best predictor for depth val-
ues will also be a good candidate for motion prediction.

In order to choose the best predictor we offer ourselves
two choices, the first sample with the same Laplacian sign
on the edge in the current or in the previous frame. In each
step, we keep track of the used strategy in a table containing
all possible 3× 3-binary edge configurations. The strategy
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to choose a new sample is based on the corresponding en-
try, if current frames proved more successful, we apply this
strategy, otherwise we use the previous frame. Afterwards
we verify whether this choice was effectively the better one.
We cannot do this before because we need a deterministic
scheme that allows us to execute the same steps on the client
for decompression. Based on the verification, we update our
table entry which will affect the decision for the next similar
context. In this way we probabilistically train a good predic-
tor for each given context.

To reduce the range of the residual values, one can per-
form additional quantization which results in increased com-
pression ratios and only slightly reduced accuracy. In our
implementation, a quantization factor of 2 generates frames
with approx. 90% of zero residual coefficients.

In order to capture low-frequency value changes, we
added an additional edge-sample value every 32×32 pixels.
These regular samples define a low resolution image that can
be compressed separately. This way, we better preserve the
edge-like nature in the remaining image which is exploited
by our encoding algorithm. In practice, the low resolution
image is encoded using the Paeth predictor [Pae91] followed
by entropy coding.

Motion Flow Quantization For static objects, motion vec-
tors are only a consequence of camera movement, which is
known by the client. Hence, we encode only the non-camera
movement of dynamic object pixels. We further quantize 2D
motion vectors non-linearly by applying a power function
(0.5), which favors slower motion, as these movements are
most crucial for the upsampling process. Only fast moving
dynamic objects might exhibit some small artifacts which
are usually invisible because our detail perception on mov-
ing objects is much lower than for static elements. Conse-
quently, the motion flow encoding proved less critical. Its
spatial and temporal coherence leads to a good compression.

4. Applications

Besides the discussed spatio-temporal upsampling of lower
resolution frames, the augmented depth/motion information
allows for various other applications on the client-side. We
will briefly introduce and discuss a few important ones.

3D Stereo Rendering Knowing the camera and depth is
enough to compute 3D stereo via image-based warping.
We use the technique proposed in [DRE∗10], where a grid
is overlayed with the depth buffer. The grid’s vertices are
snapped to the pixel corners between foreground and back-
ground depth-buffer pixels to reduce artifacts. We then trans-
form this grid to simulate a left and right eye view. Disoc-
cluded pixels can optionally be blurred to reduce the visibil-
ity of artifacts. The procedure runs entirely on the GPU and
takes less than 2 msec (nVidia GTX 280) for the grid warp-
ing with a resolution of 320×180 vertices which is sufficient

for an HD-ready resolution. In Fig. 1, image 3, the detailed
leaves and the fly in the foreground are nicely warped, which
shows the importance of precise depth edges.

Temporal Upsampling We can also interpolate or extrapo-
late frames in time (Fig. 1). Such an approach has been pro-
posed in [DER∗10]. The current frame is warped to the fu-
ture by extrapolating the motion vectors and using the depth
for occlusion. Of course, non-linear motion and motion dis-
continuities can result in overshoots. Such scheme is most
sensible for high frame rates above 30 Hz to reduce LCD-
display hold-type blur [DER∗10]. Nevertheless, it is useful
if frames are dropped during transmission.

Advertisement and Highlighting The depth buffer can be
used for many interesting effects to highlight elements, e.g.,
Unsharp masking [LCD06]. Although such an operation
could be employed on the server side, for sports events,
where many clients share the same data stream, high-lighting
can be done locally, thus allowing an observer to track their
favorite player or adjust display settings (e.g., screen-space
ambient occlusion is part of many display drivers, but not
everybody appreciates and activates the mode). Another ex-
ample is online advertisement. The supplementary streams
make it possible to seamlessly integrate new content that can
directly target the interacting user.

5. Results

We developed a proof-of-concept OpenGL prototype, com-
puting all steps of our streaming system, however simulated
without network component. We run the full application
(Server and Client) on a desktop system equipped with an
Intel Core 2 Quad Processor Q9550 and a NVIDIA Geforce
GTX 280 graphics card and, separately, the client-side op-
erates on a notebook computer with an NVIDIA Geforce
9400M GPU and an Intel Core 2 Duo 2.2Ghz CPU, a lower-
end card that is comparable to modern mobile GPUs. We
tested our approach on various challenging 3D scenes, of
which we analyzed three in detail. The SIBENIK scene is
fully dynamic with quickly changing lighting, but it has
relatively simple geometry and depth (plus motion) com-
presses well using our scheme. The SPONZA scene consists
of mostly static diffuse geometry, for which spatial upsam-
pling is strongly beneficial assuming that depth is encoded
precisely enough. However, it represents a worst-case sce-
nario for depth compression because of the detailed tree
model. Finally, the FAIRY scene is excessively textured and
exhibits high-tessellated dynamic objects and complex mo-
tion trajectories.

In Table 1, we analyze the performance of our method
and unfold the timings for each step of our algorithm. As il-
lustrated in Figure 2, most of these steps map to GPU pixel
shaders, only the H.264 video and final edge encoding are
CPU based. Edge image encoding performs neighborhood
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matching on the GPU, writing the result in a texture that
is read back to main memory, where we apply CPU arith-
metic coding. Despite this CPU involvement, we already
achieve real-time performance on mainstream hardware for
server and client. Our client-side timings are achieved in mil-
liseconds. Even on a weak client (notebook with low-end
GPU), our decoding and upsampling at resolution 800×600
reaches realtime frame rates of 25–30 fps (15.5 ms for dif-
fusion and upsampling on GPU, 25 ms for stream decoding
on CPU). Moreover, the compression of motion and depth
edges is relatively simple to perform for the server. Our
scheme is suitable for low-cost client hardware and ready
for today’s portable technology. The server workload scales
well for more clients by various means, particulary the up-
sampling factor enables strong speedups (see also supple-
mentary material).

The video encoding of (low-res.) frames is performed on
the highly optimized x264 CPU encoder. However, encoding
performance depends on profile settings from which only
“ultrafast” to “veryfast” settings achieved real-time rates
on our hardware for HD-ready resolutions. Since we do
not tolerate frame delay we can only use I- and P-frames
(i.e., disable bidirectional motion-compensated B-frames)
which, in combination with the two mentioned settings,
yields poor quality for moderate bit rates (2 Mbit/sec). How-
ever, when encoding low-res. frames (as needed by our so-
lution), “medium” or even “slow” quality settings achieve
real-time performance.

Scene Resolution
Server Client

Tren Th264 T low
ren Tpre Tenc Fps Speedup Tdec Tdi f Tup

SIBENIK

SVGA 57 32.3 8.6 3.8 26.6 25.6 ×2.3 19.0 1.3 1.2

HD 720p 106 46.0 14.5 6.2 26.8 21.1 ×3.1 20.3 1.5 2.3

HD 1080p 251 73.7 29.1 13.9 47.1 11.1 ×3.6 38.4 3.4 4.8

SPONZA

SVGA 63 32.4 9.1 3.9 29.7 23.4 ×2.3 23.4 1.5 1.2

HD 720p 120 45.0 15.1 6.9 35.2 17.5 ×2.9 28.9 2.1 2.2

HD 1080p 271 76.4 30.7 14.4 57.0 9.8 ×3.4 48.0 3.9 4.7

FAIRY

SVGA 32 31.0 7.2 3.8 24.2 28.4 ×1.8 16.0 1.3 1.1

HD 720p 51 44.4 10.6 7.3 32.3 19.9 ×1.9 24.6 2.6 2.1

HD 1080p 107 72.2 16.7 15.7 54.6 11.5 ×2.1 46.7 2.8 4.7

Table 1: Server and Client timings (in msec) for different target
resolutions: 800×600 (SVGA), 1280×720 (HD 720p), 1920×1080
(HD 1080p). Rendering costs are dominated by frame size and all
frames are 4× upsampled. For comparison the costs for full-res.
rendering (Tren) and video-encoding with H.264 (Th264) are provided
together with the savings by our method in column (Speedup). Our
server-side timings comprise: low-res. rendering (deferred shading)
(T low

ren ), the time for previous frame depth/motion warping plus edge
diffusion (simulating client steps) plus all other GPU steps involved
in the pipeline (Tpre) and, finally, the arithmetic and H.264 low-res.
encoding on the CPU (Tenc). On the client-side we perform: low-
res. H.264 stream and edge decoding including depth/motion frame
prediction (Tdec), and edge diffusion (Tdi f ) followed by upsampling
the low-res. video frame (Tup).

The resulting compression ratio and the quality is ana-
lyzed in Table 2. We compare the efficiency of our method

Scene
Bandwidth H.264 Our method

shading depth A B A B
[Mbit/sec] [Mbit/sec] [dB] [dB] [dB] [dB]

SIBENIK 2.0 1.0 35.1 49.6 35.7 49.5
SPONZA 2.0 2.5 34.2 51.2 35.8 54.2
FAIRY 2.0 2.0 30.6 52.5 33.5 64.2

Table 2: Quality comparison with H.264 codec. For a given band-
width constraint we compare the quality (PSNR measured on fi-
nal output images) of our solution in respect to H.264 based
depth+motion encoding. A) Spatio-temporal upsampling done on
the client compared to ground truth high-res. image. B) Depth buffer
reconstruction on the client side.

for 3D stereo vision and spatio-temporal upsampling for
various configurations. Regarding the absolute compression
error (PSNR) of depth images, we are not always better
than depth encoding with H.264. However, our compres-
sion scheme better preserves depth and motion vectors along
edges, which is crucial for our applications. Hereby, we
avoid visible distortions while in other homogeneous regions
our introduced error is less perceptible. This property also
translates in an improved frame reconstruction as illustrated
in Fig. 1, Table 2 and the accompanying video.

Generally, our method provides a high-quality depth and
motion approximation well suited for upsampling and warp-
ing frames (see Fig. 1). Our client-side spatio-temporal bilat-
eral upsampling (Sec. 3.3) ensures robust upsampled frames
even for a larger depth/motion-residual quantization (e.g.,
q = 3) since the edge topology is encoded lossless and there-
fore avoids leakage between discontinuous image regions.
In our results we encoded depth with 10 bits (or 8 bits when
comparing against H.264) and 2D motion using 2 times 8
bits whereas for H.264-encoded depth we were limited to
8 bits only. H.264 offers a special High 4 : 4 : 4 Predictive
mode particularly suited for depth, but featuring lossless en-
coding makes it impractical in our context.

Our compression exceeds the quality of the state-of-the-
art platelets approach [MMS∗09] (Fig. 8). For a fair com-
parison, we only relied on an intra-frame context and did not
make use of previous frames for this comparison. In partic-
ular, we manage to maintain complex boundaries, which are
only linearly approximated for platelets. A disadvantage of
our compression is that the bitrate is harder to control than
for platelets. Nevertheless, our solution is practical and the
adaptive scheme steers the bitrate convincingly to reach an
acceptably low deviation (Fig. 7). Such a property is impor-
tant for online contexts.

Our diffusion solution compares favorably to many ex-
isting methods. Simple push-pull solutions fill holes using
nearest samples, often involving a Gaussian pyramid. How-
ever, averaging across edges leads to leakage which might be
unacceptable. For our solution, leakage occurs only where
it is least perceivable (even for 3D warping) and has lit-
tle impact on the upsampling process. PDE-based diffu-
sion [FFLS08, OBW∗08] provides good quality and smooth
results, but is rather costly and difficult to control the number
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D.Pająk, R.Herzog, E.Eisemann, K.Myszkowski and H.P.Seidel / Remote Rendering with Augmented Streaming

 0

 20

 40

 60

 80

 100

 120

 140

500000 1000000 1500000 2000000 2500000
width * height (pixels)

Bit-rate versus Frame Size

VGA DVDSVGA

XGA
HD-ready

S-XGA

HD Digital
 Cinema

k-bits / frame

Figure 7: Plot of mean and standard dev. (over 400 frames)
of the bit rate with respect to frame resolution for constant
edge detection thresholds of the animated (camera, lighting
and objects) Sibenik scene.
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Figure 8: Depth reconstruction quality: For the same band-
width (0.1 bits/pixel), our method achieves significantly bet-
ter reconstruction quality (PSNR of 48.1 dB) than platelet
encoding (PSNR of 43.9) and captures smooth regions and
discontinuities. (Data courtesy of [MMS∗09])

of iterations until convergence. Further, such a global diffu-
sion is not needed and is disturbed by the uniform edge sam-
ples. Recent work by Fattal [Fat09] introduces second gen-
eration wavelets for edge-stopping smoothing and diffusion,
that could be used in our context. Nonetheless, our approach
is simpler and faster, with directly controlled execution time.
Furthermore, our method achieves the highest-quality recon-
struction when applied to our streamed representation, as it
is inherently well suited for the additional sparse uniform
sampling. Fig. 4 compares the various approaches.

6. Limitations and Future Work

Our streaming solution inherits limitations from upsam-
pling methods. For volumetric effects, mirror reflections, re-
fractions or multi-sample rendering (e.g. antialiasing, trans-
parency) the computed geometric flow will not correspond
to the actual optical flow, thus, forcing temporal reprojec-
tion to fail. Deriving correct motion flow and depth in such a
scenario is challenging. However, as shown in the accompa-
nying video, our scheme handles these situations partially by
automatically falling back to pure spatial upsampling, more
advanced detection methods or handling remain future work.

The H.264 video encoder uses the x264 library [x26],

which is limited to 4:2:0 chroma subsampling that stores
color data downsampled by a factor of 2 in both dimensions.
This sometimes leads to undesired color bleeding in colorful
scenes in case that the spatial upsampling window is larger
than 2. However, we believe that 4:2:2 or even better 4:4:4
chroma subsampling would solve this issue.

Currently, we use a sparse regular sampling to account for
low-frequency information. Although this proved sufficient
for our purposes, an interesting alternative could be to rely
on multi-scale edge detection. Further, our statistical edge
encoding could be improved with a global optimization, but
then we would lose efficiency.

Lossless edge-topology encoding is difficult to combine
with constant bandwidth usage. For some particular scenar-
ios the perceptual edge weighting scheme did not converge
to the target rate quickly enough. Faster bandwidth control
could be achieved by scaling the resolution and/or framerate
dynamically, as in the H.264 SVC standard.

Performance-wise the proposed solution assumes server-
side pixel computations to be moderately expensive. In case
of simple shaders (Table 1, FAIRY scene) the system is not
able to efficiently amortize the cost of additional compu-
tations with lower resolution rendering. However, similar
to commercial solutions, video compression could be per-
formed in hardware and further code optimizations (vector-
ization/parallelization) remain possible. In fact, our method
could easily benefit from specialized hardware. Similar to
H.264, the final (and the most expensive) encoding step em-
ploys a standard arithmetic encoder (i.e. CABAC) which
makes us believe that a full-quality hardware realization is
possible using existing components.

7. Conclusion

We presented an efficient solution for 3D-rendered-content
streaming. Our method achieves similar compression as
high-end encoders. In contrast to competition, our approach
provides the client with additional information, such as
depth, at no additional transmission cost. Our contribution is
also the careful selection of such data: inexpensive to com-
pute on the GPU server (much cheaper than full-resolution
frames), but easy-to-compress without dependence on fu-
ture frames. Moreover, the full resolution depth maps en-
able 3D stereo viewing and the motion-flow maps can be
used to boost the frame rate (important to reduce hold-type
blur for LCD displays) or recover corrupted frames. Another
interesting application is personalized rendering for adver-
tisement or enhancement purposes. Our scheme is naturally
compatible with existing game engines. It relies on special-
ized rendering procedures, but the required changes are min-
imal and easy to realize in game engines (for games, deferred
shading is common and directly provides the needed data).
This feature makes our approach attractive for many stream-
ing contexts. Moreover, we are not limited to rasterization.
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Our framework can be beneficial for raytracing, where re-
mote rendering is even more appropriate since computations
require high-performance computers, or even cluster.
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