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Abstract
Purpose Quantitative analysis of vascular blood flow,
acquired by phase-contrast MRI, requires accurate segmen-
tation of the vessel lumen. In clinical practice, 2D-cine veloc-
ity-encoded slices are inspected, and the lumen is segmented
manually. However, segmentation of time-resolved volumet-
ric blood-flow measurements is a tedious and time-consum-
ing task requiring automation.
Methods Automated segmentation of large thoracic arteries,
based solely on the 3D-cine phase-contrast MRI (PC-MRI)
blood-flow data, was done. An active surface model, which
is fast and topologically stable, was used. The active surface
model requires an initial surface, approximating the desired
segmentation. A method to generate this surface was devel-
oped based on a voxel-wise temporal maximum of blood-
flow velocities. The active surface model balances forces,
based on the surface structure and image features derived
from the blood-flow data. The segmentation results were val-
idated using volunteer studies, including time-resolved 3D
and 2D blood-flow data. The segmented surface was inter-
sected with a velocity-encoded PC-MRI slice, resulting in a
cross-sectional contour of the lumen. These cross-sections
were compared to reference contours that were manually
delineated on high-resolution 2D-cine slices.
Results The automated approach closely approximates the
manual blood-flow segmentations, with error distances on
the order of the voxel size. The initial surface provides a
close approximation of the desired luminal geometry. This
improves the convergence time of the active surface and facil-
itates parametrization.
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Conclusions An active surface approach for vessel lumen
segmentation was developed, suitable for quantitative anal-
ysis of 3D-cine PC-MRI blood-flow data. As opposed to
prior thresholding and level-set approaches, the active sur-
face model is topologically stable. A method to generate
an initial approximate surface was developed, and various
features that influence the segmentation model were evalu-
ated. The active surface segmentation results were shown to
closely approximate manual segmentations.
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Introduction

Cardiovascular disease (CVD) is a class of conditions affect-
ing the heart and blood vessels. At present, CVD has an
estimated overall prevalence of over thirty percent of the
American population [2] and is currently the leading cause
of death worldwide.

Blood-flow mechanics play an important role in the pro-
gression of cardiovascular diseases. Flowing blood directly
interacts with the cardiovascular biology, possibly altering its
morphology. Pre-clinical research, therefore, aims to under-
stand the complex dynamical behavior of the blood flow. New
insights into the hemodynamic behavior may reveal relevant
information for future diagnosis and prognosis.

In the past, experimental flow measurements and com-
putational fluid dynamics (CFD) simulations provided the
predominant source of information for analyzing the hemo-
dynamic behavior. Nowadays, blood-flow velocities can also
be measured by a wide range of imaging modalities, ruling
out model assumptions. However, measurements come with
acquisition artefacts and resolution deficiencies. In this work,
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Fig. 1 A sagittal slice of 3D-cine PC-MRI blood-flow velocity data,
depicted by the directions of acquisition at systole, where x conveys the
flow in right-to-left direction, y in anterior-to-posterior direction and z
in feet-to-head direction

we focus on blood-flow velocity information, acquired non-
invasively by magnetic resonance imaging (MRI).

Phase-contrast MRI methods enable acquisition of time-
resolved 3D blood-flow velocity fields, as depicted in Fig. 1.
The resulting data is linearly related to the actual blood-flow
velocities and can, therefore, be analyzed quantitatively. A
typical data set encodes a full heartbeat, comprising 20–25
phases with a spatial resolution of 128 × 128 × 50 vox-
els. The size of the voxels is generally on the order of
two to three millimeters, and slightly anisotropic. A wide
range of blood-flow characteristics can be derived from
the acquired blood-flow velocities. For example, cardiac
output, regurgitation fraction, and pressure can be com-
puted.

Meaningful quantification of blood-flow characteristics
requires accurate segmentation of the vessel lumen. In clin-
ical practice, segmentations are typically obtained by man-
ual delineation of the vessel circumference on a 2D slice, at
one or more phases of the cardiac cycle. In case of veloc-
ity-encoded data, the blood-flow lumen may be delineated.
Despite the intra- and inter-observer variability of these man-
ual segmentations, this approach is sufficiently fast and accu-
rate for practical purposes.

Extending the segmentation approach to a 3D-cine data set
is non-trivial. While segmentation in a 2D-cine case compris-
ing a single circumference, segmentation of volumetric data
results in a 3D surface (Fig. 2).

Manual segmentation of 3D-cine blood-flow data is labo-
rious and time-consuming and, therefore, not suitable for
clinical practice. An automated segmentation approach is
required, based on the 3D-cine PC-MRI blood-flow data.

On occasion, no high-quality anatomical data are avail-
able, next to the velocity-encoded data. For these cases,
quantitative analysis should be possible as well. Therefore,
our segmentation approach includes blood-flow data only.
As a result, the segmentation cannot approximate the vessel
wall morphology. Instead, the segmentation will distinguish
the blood-flow regions from surrounding stationary tissues
throughout the cardiac cycle, capturing the luminal geome-
try.

Fig. 2 Active surface segmentation of the PC-MRI-acquired cardio-
vascular blood-flow field

Background

Over the past two decades, a large body of research has
focussed on the acquisition of MRI blood-flow velocity
fields. In particular, 2D-cine blood-flow acquisition has
become a mature modality, suitable for clinical practice.
Consequently, 2D-cine blood-flow information is commonly
acquired for complex conditions, such as congenital heart
defects. In contrast, acquisition of 3D-cine PC-MRI blood-
flow data is rather novel, and therefore, subject to further
investigation and standardization.

In general, segmentation of the vessel lumen enables more
accurate quantification of the inspected blood-flow parame-
ters, as well as improved quality of visual representations. A
wide range of studies investigate the behavior of pathological
blood flow. Such analyses can rely on local inspection, using
planar reformats or pathlines visualizations, as presented by
Markl et al. [8,9]. In addition, segmentation can be performed
locally, providing contours that intersect the vasculature at
specified regions of interest [15].

Alternatively, the workflow may include a global segmen-
tation step, using either anatomical images [9,13] or angio-
graphic images [6]. It is possible to derive such angiographic
images from the 3D-cine MRI blood-flow data.

In addition to morphological and angiographic informa-
tion, the full blood-flow velocity information can be incor-
porated into the segmentation process, using both speed and
direction information. This results in more accurate segmen-
tation of the luminal geometry.

The amount of literature that specifically explores seg-
mentations for blood-flow velocity fields is limited. Chung
et al. [3] have segmented the vasculature in the brain, based
on phase-contrast MRI blood-flow data. They employ the
local coherence of the velocities, using a scalar-valued mea-
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Fig. 3 Image feature intensities. Respectively blood-flow speed, local
phase coherence and eigenvalue coherence. Within the blood-flow
regions, intensities are high, with a discontinuity on the boundaries
with stationary tissue

sure called the local phase coherence (LPC). The luminal
geometry is segmented using automated thresholds on the
histogram of coherence values. The LPC measure clearly
indicates the boundaries of the vessel lumen. However, the
presented thresholding approach is noise prone and relies on
various assumptions concerning the histogram distribution.

In contrast, Solem et al. [12] and Persson et al. [11] have
proposed a level-set segmentation, also using the blood-flow
coherence. Their coherence measure, called the eigenvalue
coherence (EVC), relies on local orientation distributions of
the velocities. The blood flow is said to be locally coherent
when a local distribution has one predominant orientation.
This is determined by eigenanalysis of the average structure
tensor. Although a level-set approach is versatile and robust,
topological changes may cause the segmentation to struc-
turally branch. This is undesirable when the structure of the
luminal geometry is known a priori.

Furthermore, active shape [14] and active appearance
models are widely used. These methods incorporate domain-
specific knowledge, which often results in poor segmenta-
tions of anomalous morphologies.

In this work, we present a segmentation of the large tho-
racic arteries, based on 3D-cine PC-MRI blood-flow data.
Instead of local 2D segmentations of the vasculature [9,15],
we present a global segmentation of the blood-flow lumen.
Therefore, we employ an active surface model, as opposed to
thresholding, level-set, or active shape approaches. An active
surface benefits from topological stability, preventing unde-
sirable branches, splits, or holes in the surface. Moreover,
active surfaces are generally more accurate than thresholds
and outperform level-sets in terms of computation time.

Our custom-made active surface model is based on
the velocity information, including blood-flow direction
through coherence measures found in literature. To the
best of our knowledge, an active surface approach, based
on full velocity information, has not been employed for
segmentation of the blood-flow lumen before. In gen-
eral, active surface models require an initial surface that
approximates the final segmentation result. Therefore, we
introduce a novel approach to extract the initial approx-
imate surface from a temporal maximum volume of the

blood-flow speed intensities. We have validated our seg-
mentation results against manual segmentations, performed
on 2D-cine velocity-encoded PC-MRI slices with higher
spatial resolution. This validation shows the performance
of the various measures underlying the active surface
model.

In summary, the main contributions of this paper are as
follows:

– An active surface model for fast, accurate, and topolog-
ically stable segmentation of blood-flow regions within
the large thoracic arteries. We introduce a novel approach
to generate an approximate initial surface, based on a tem-
poral maximum speed volume, and predict our potential
forces upon different blood-flow coherence measures.

– A validation study, demonstrating the feasibility of
active surface segmentation of the blood-flow lumen, and
measuring the performance of various features against
manual segmentation on 2D-cine velocity-encoded PC-
MRI slices.

Methodology

We aim to distinguish blood-flow regions from stationary
tissues. This distinction is based on the assumption that the
speed of displacement of cardiovascular structures is substan-
tially slower than the speed of flowing blood. This assump-
tion is necessary because the MRI sequence encodes veloci-
ties of all tissues. In addition, we assume that flowing blood
is locally coherent.

We have developed a custom active surface approach.
Active surface models require an initial surface that roughly
approximates the final segmentation. This initial surface will
be attracted towards the desired boundaries of the blood-
flow lumen, requiring forces based on image features. The
image features are derived from the blood-flow data (Fig. 3).
To segment the lumen, these features should emphasize the
boundaries between blood-flow regions and stationary tissue.

Our segmentation methodology is structured as follows:

– Initial surface extraction (“Initial surface extraction”):
First, we extract an initial surface, which will be subject
to the forces imposed by the active surface model.

– Feature extraction (“Feature extraction”):
Second, we pre-compute the image features, which will
define an attractor image. An attractor images drives the
potential forces of the active surface model.

– Active surface segmentation (“Active surface segmenta-
tion”):
The active surface model performs an energy optimiza-
tion to obtain the desired segmentation of the blood-flow
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Fig. 4 A temporal maximum speed volume (tMSV) takes the max-
imum blood-flow speed for each voxel throughout the cardiac cycle.
An initial surface can be extracted from this static representation of the
blood-flow regions. A standard marching cubes algorithm is employed
to generate the iso-surface

lumen, deforming the initial surface based on the attractor
image and the surface shape.

Initial surface extraction

An active surface approach requires an initial approximate
surface. Therefore, we present a novel approach to generate
the initial surface, providing a good first approximation of
the luminal geometry.

First, we derive a static representation of the temporal
behavior of the blood flow. This pre-processing step results
in a scalar-valued volume, called a temporal maximum speed
volume (tMSV). This volume represents the peak blood-flow
speed intensity over time and resembles an angiographic
image, as depicted in Fig. 4. For each voxel, the maximum
blood-flow speed throughout the cardiac cycle is selected
from the velocity field −→v (x). Hence, the tMSV at each voxel
position x is defined for N cardiac phases as:

tMSV(x) = max
(||−→v (x)||ti

)
for i = 0, . . . , N − 1 (1)

Second, we generate the initial surface, using the tMSV
volume. An iso-surface is extracted by roughly setting an
iso-threshold. We aim for an initial approximate surface,
and therefore, the iso-threshold can be determined visually.
Variation of the iso-threshold will provide a different ini-
tial surface, but will not strongly affect the results of the
active surface model. For the iso-surface extraction, we have
employed the marching cubes algorithm [7] (see Fig. 4).

Feature extraction

In order to define attracting forces for the active surface
model, we require features that emphasize the boundaries
between blood-flow regions and stationary tissue. Therefore,
the features should be sensitive to the blood-flow speed and
direction, which means that the feature intensities should be
unidirectionally affected as a function of the variations in the
blood-flow velocities. In addition, we require that the features
are spatially robust to noise.

Blood-flow speed (BFS)

The blood-flow speed is commonly inspected in angiograms
and is employed by the majority of segmentation approaches.
BFS is defined as the length of velocity −→v at each voxel
position x:

bfs (x) = ∥∥−→v (x)
∥∥ =

√−→v (x)2
x + −→v (x)2

y + −→v (x)2
z (2)

This feature is not sensitive to the blood-flow direction
and is commonly computed without local averaging. Averag-
ing the speed information in a local neighborhood improves
noise-robustness, at the expense of contrast near the sought
edges. Alternatively, the noise can be suppressed by mask-
ing the velocities with a complex-difference reconstruction
of the original MRI data [10].

Local Phase Coherence (LPC)

Besides speed, also direction information provides valuable
information for the segmentation process. Directions of the
blood-flow field are said to be locally coherent, as opposed
to blood-flow velocities near the boundaries.

Chung et al. [3] introduced the LPC metric, locally mea-
suring the coherence as a scalar value for each voxel of the
data set. They compute the average angle between a velocity
vector and its direct neighbors. Thereto, they compute the
sum of inner products of each unit-length velocity vector v̂

with the unit-length velocities of the direct neighbors. The
result is normalized by the amount of velocities M in the
neighborhood.

lpc (x)= 1

M

1∑

u=−1

1∑

v=−1

1∑

w=−1

v̂(x)·v̂(xx +u, xy +v, xz +w)

(3)

The LPC is based on inner products, which by definition
results in sensitivity to blood-flow direction. Averaging of
the velocities in the neighborhood provides built-in robust-
ness to noise. By normalizing the velocities, as proposed by
Chung et al. [3], this feature is not sensitive to the blood-flow
speed.

Eigenvalue Coherence (EVC)

An alternative coherence metric was introduced by Solem
et al. [12]. Instead of considering angles, they determine the
coherence based on a local distribution of orientations. An
orientation distribution is computed as the average structure
tensor [4] of velocities in a local neighborhood. The structure
tensor is used as the tensor product of a velocity vector with
itself.

To obtain the coherence metric, eigenanalysis is per-
formed on the average structure tensor T at each voxel
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Fig. 5 Schematic overview of the internal forces [1]. a The elasticity
force Fe operates in the tangential direction, based on the direct neigh-
bors. b The rigidity force Fr operates in the normal direction, based
on the second-order neighborhood. c For the active surface model, this
approach is applied to a 3D surface, restraining excessive deformation

position. The eigenvectors span the basis of the orientation
distribution. Intuitively, this can be thought of as an ellipsoid
that represents the variation of orientations in the local neigh-
borhood. When the original velocity directions are locally
coherent, the ellipsoid is elongated, with a dominant principal
eigenvector. However, when the original velocity directions
were incoherent, the ellipsoid becomes spherical.

The coherence can, therefore, be derived from the lengths
of the eigenvectors of the local structure tensor. Hence, the
local eigenvalue coherence metric is defined as a ratio of the
ordered eigenvalues λi :

evc (T) =
(

λ1 − λ2

λ1 + λ2

)2

(4)

Due to the tensor product, this feature is only sensitive to
orientation, discarding the sign of the velocity direction. It
is fair to assume that within a small blood-flow region there
will be no directly opposing blood-flow directions. There-
fore, orientation information is sufficient. Furthermore, EVC
is sensitive to the blood-flow speed and is considerably robust
to noise.

Active surface segmentation

An active surface model deforms a parametric surface, until
the surface closely approximates the boundaries of interest in
the provided data set. In comparison to other segmentation
methods, active surfaces are computationally efficient and
can operate with sub-voxel accuracy. Moreover, active sur-
faces are topologically stable and generally robust to noise.

However, active surface models suffer from numerical
instability and may converge to local minima. The impact
of these disadvantages is minimized when the model is pro-
vided with an approximate initial surface. Our approach to
generate such a surface was described in section “Initial sur-
face extraction”.

The surface is provided with a potential energy, moving
the surface towards edges in the attractor image. For our
application, this attractor image, or energy image, is based
on the features described in section “Feature extraction”. In
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Fig. 6 Schematic overview of the external forces. a The intensity pro-
file across a vessel shows a gradual slope around the boundaries for
the BFS. b By including direction information, the EVC feature defines
sharper boundaries. c The gradient magnitude of these features provides
an attractor image, defining the potential forces (arrows)

addition, the active surface has an internal energy, determined
by the surface shape.

The active surface model aims to minimize the total energy
functional, which is defined as the sum of the potential energy
and the internal energy. Minimizing the total energy is equiv-
alent to solving the corresponding Euler–Lagrange equation,
which is performed by means of a gradient descent approach
[1]. This derivation results in a force balance between the
internal forces Fint and the potential forces Fpot , defined for
each node n of the surface mesh as:

Fint (n) = w · Fpot (n), with Fint = α · Fe(n) + β · Fr (n)

(5)

The internal forces restrain excessive surface deforma-
tions. On the one hand, an elasticity force Fe limits stretching
of the surface. On the other hand, a rigidity force Fr restrains
inordinate bending. The computation of these forces, respec-
tively, depends on the first- and second-order surface deriv-
atives. These derivatives are approximated numerically on
the surface mesh [1], using the first- and second-order node
neighborhoods, as depicted in Fig. 5a and b. The stretching
and bending constraints are imposed on all nodes of the three-
dimensional surface mesh (Fig. 5c), yielding smoothness of
the surface.

The external forces attract the surface towards the bound-
aries between blood-flow regions and stationary tissue. The
direction and strength of these potential forces Fpot are drawn
from an attractor image, based on the features introduced in
“Feature extraction”.

In Fig. 6a and b, we depict an intensity profile across a ves-
sel of the BFS and the EVC feature, respectively. By incor-
porating the blood-flow direction, the EVC feature provides
relatively sharp edges at the blood-flow lumen boundaries.
In contrast, the BFS shows a gradual intensity change. As
a result, the EVC provides a better indication of the desired
boundary locations. This also holds for the LPC feature.

As opposed to the image features, the attractor image
requires a maximum intensity at the desired boundaries, with
a gradual intensity change towards these maxima. Therefore,
we employ an elementary edge detection on the BFS and
the EVC feature, using the gradient magnitude operator. The

123



222 Int J CARS (2012) 7:217–224

Fig. 7 (left) 3D-cine blood-flow data with segmented surface and
oblique 2D-cine validation slice. (right) Manually segmented contour
on 2D-cine slice (large green dots) and computed surface cross-section
(small red dots)

resulting attractor image is schematically depicted by the
intensity profile in Fig. 6c. By definition, the LPC feature
can be applied directly as attractor image.

The potential forces are drawn from the attractor image,
for each node on the surface mesh. The surface is attracted
towards the boundaries, as depicted by the curved arrows in
Fig. 6c. To the best of our knowledge, coherence-based fea-
tures have not been employed before, to define the external
forces of an active surface model.

The active surface model can be parameterized by three
weighting parameters α, β, and w. With these parameters,
the user can steer the force balance, where α and β increase
surface smoothness and w increases influence of the blood-
flow information. All parameters were scaled to a [0,1]
range. The active surface model iterates until the system
reaches equilibrium, or arrives at a maximum number of iter-
ations.

Validation

For each 3D-cine PC-MRI data set, a number of 2D-
cine PC-MRI slices are available. These 2D-cine slices are
acquired perpendicular to the vessel of interest, measuring
the through-plane flow as a scalar value (Fig. 7). Acquisition
of these slices allows higher spatial and temporal resolution
compared to the 3D-cine blood-flow acquisition. Therefore,
the 2D-cine slices can be used as a local approximation of
the ground truth.

Obtaining an approximate 3D ground-truth segmentation
is difficult. Acquisition of higher resolution volumetric flow
data is not feasible with current MRI sequences. Moreover,
manual segmentation of the 3D luminal geometry is tedious
and time-consuming, and therefore, not practicable for larger
validation studies.

First, the blood-flow lumen is manually segmented using
a 2D-cine slice, similar to segmentations performed in clini-
cal practice. This results in a reference contour that captures

the blood-flow region, described by a point set in patient
coordinates.

Second, the cross-section of active surface and the 2D-cine
slice is determined, resulting in a point set that describes the
cross-section contour (Fig. 7).

Lastly, the correspondence between the two discrete con-
tours needs to be computed. Therefore, we have adopted
a variation on the distance-to-closest-point (DCP) mea-
sure, which provides an intuitive distance in millime-
ters. Since the point correspondence between the two
contours is not a one-to-one relation [5], point correspon-
dences are determined bi-directionally between the two con-
tours.

Results

The validation was performed using four volunteer studies,
inspecting two 2D-cine velocity-encoded slices per study.
One slice is oriented perpendicular to the aorta, and one
slice is oriented perpendicular to a region of the pulmonary
artery.

Table 1 provides an overview of the validation results. For
each of the inspected regions, the distance between the active
surface segmentation and the manually segmented reference
contour is provided in millimeters. This is based on the dis-
tance-to-closest-point metric. To demonstrate the feasibility
of our active surface approach, the optimal segmentation was
obtained by varying the user parameters on a case-by-case
basis.

The results show that the average distance between the
active surface segmentation and the reference contour is
generally less than 2.5 mm, which is smaller than the voxel
size of the 3D-cine blood-flow data. All values larger than
2.5 mm are presented in italics in Table 1. This shows that
both coherence measures provide a better attractor image
for the active surface model, and hence that the blood-flow
direction information is worthwhile to incorporate in the seg-
mentation approach. Furthermore, we observe that there is no
significant performance difference between both coherence
measures.

A preliminary general parameter set provides acceptable
segmentations, although the stringent requirement of voxel
accuracy is no longer achieved. The global parameter set
is derived for the LPC and the EVC feature, computing
the mean parameters with their standard deviations. For the
LPC metric, the parameter set becomes (α, β,w) = (0.05 ±
0.03, 0.04±0.04, 0.13±0.03), while for the EVC metric, we
propose (α, β,w) = (0.09±0.03, 0.05±0.02, 0.16±0.09).
Note that all parameters are defined in a [0,1] range, and that
therefore, the range of variation per parameter is consider-
ably small.
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Table 1 Validation results

# Region-of-interest Blood-flow speed (α, β,w) Local phase coherence (α, β,w) Eigenvalue coherence (α, β,w)

1 Aorta 1.80 (0.03, 0.05, 0.15) 1.55 (0.03, 0.10, 0.14) 1.29 (0.11, 0.06, 0.10)

2 Aorta 3.04 (0.03, 0.07, 0.25) 2.07 (0.07, 0.03, 0.10) 1.78 (0.12, 0.10, 0.15)

3 Aorta 2.92 (0.07, 0.01, 0.12) 2.44 (0.02, 0.01, 0.20) 1.95 (0.07, 0.04, 0.20)

4 Aorta 2.31 (0.05, 0.03, 0.08) 2.01 (0.06, 0.03, 0.09) 1.85 (0.07, 0.04, 0.04)

1 Pulmonary artery (trunk) 3.17 (0.10, 0.10, 0.30) 1.38 (0.03, 0.10, 0.14) 1.47 (0.11, 0.06, 0.10)

2 Pulmonary artery (left) 2.78 (0.07, 0.05, 0.35) 1.81 (0.10, 0.03, 0.15) 1.88 (0.10, 0.03, 0.20)

3 Pulmonary artery (right) 2.99 (0.10, 0.02, 0.20) 1.76 (0.05, 0.03, 0.15) 1.97 (0.07, 0.04, 0.12)

4 Pulmonary artery (left) 1.97 (0.02, 0.02, 0.25) 1.64 (0.02, 0.01, 0.10) 1.52 (0.05, 0.03, 0.35)

Parameters α, β and w are unitless weights, in the range [0,1]. The average contour distance, measured using distance-to-closest-point (DCP), is
defined in millimeters. Distances larger than the voxel size are italicized

Discussion

All figures presented in this work are consistently obtained
from one volunteer data set. The presented segmentation
approach was implemented using the C++ programming lan-
guage, using the Visualization Toolkit (VTK) library [16].

Active surface models are computationally efficient, in
particular when the initial surface provides a good approxi-
mation of the end result. After the initial surface is roughly
determined by visual inspection, the algorithm execution
time is on the order of seconds. Pre-computation of the attrac-
tor images also takes merely seconds and is required only
once.

To perform the active surface segmentation, first an iso-
threshold is required to extract the initial surface. In general,
the iso-threshold is defined conservatively, imposing a rea-
sonable amount of undersegmentation. This minimizes the
chance that segmented structures will overlap, due to partial
volume effects. For the four presented volunteers cases, the
initial iso-thresholds varied between 0.3 and 0.45, in a [0,1]
range. There is no need for a time-consuming search for the
optimal iso-threshold.

Subsequently, the active surface segmentation is per-
formed autonomously, based on the three user parameters.
Four volunteer studies were validated, locally assessing the
quality of the segmentation under varying conditions. The
results show that the commonly used BFS feature performs
poorly for the envisioned segmentation, in contrast to both
coherence-based features.

The presented validation, based on 2D-cine PC-MRI
slices, limits the regions that can be evaluated. For instance,
bifurcations are difficult to assess quantitatively. However,
qualitative inspection shows promising segmentations of
bifurcating regions. In general, segmentation of complex
morphologies is theoretically supported by the well-defined
initial surface and the topological stability of the active sur-
face.

The results of the active surface are affected by the lim-
ited spatial resolution and associated partial volume effects.
Therefore, smaller arteries are challenging to segment. In
addition, the active surface approach requires the blood-flow
speed to be sufficiently fast to be captured by the initial
threshold.

The segmentation results show that the coherence-based
features provide more accurate results. In theory, these coher-
ence measures are more reliable in turbulent blood-flow
regions. Despite the large-scale turbulent behavior, the blood-
flow remains locally coherent.

In this work, we have demonstrated the feasibility of an
active surface segmentation of the blood-flow lumen, using
the full blood-flow velocity information. In the future, a larger
evaluation study may be carried out, including volunteer and
patient data. This may result in a global parameter set, suit-
able for the majority of data sets.

Prior to such a study, it may be worthwhile to investigate
automatic selection of the initial iso-threshold. Furthermore,
the manual reference segmentations may be improved by
including multiple expert segmentations per region.

In the future, the segmentation framework may be
extended with interactive techniques to cut the surface,
enabling separation of morphological structures.

Conclusions

In conclusion, we have presented an active surface segmenta-
tion approach, which facilitates meaningful quantification of
blood-flow characteristics. Our approach is based on 3D-cine
PC-MRI data and improves on existing techniques.

The presented approach achieves voxel accuracy under
noisy conditions and deals with a substantial amount of par-
tial volume effects. Moreover, the active surface segmentation
is fast and topologically stable, given an initial approximate
surface. To that end, we have presented a novel approach to
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determine the initial surface, using a pre-computed tMSV
volume to extract an iso-surface. This generic approach
enables segmentation of complex morphology and regions
with turbulent blood flow.

Our custom active surface segmentation was validated
against manual segmentations, based on high-resolution 2D-
cine velocity-encoded information. The reference segmenta-
tions were compared to the cross-section of the segmented
surface and the slice under consideration. We show that the
segmentation results closely approximate manual segmen-
tations, in particular when a coherence measure is used to
attract the surface.
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