274 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Generating Consistent Buildings: A Semantic
Approach for Integrating Procedural Techniques

Tim Tutenel, Ruben M. Smelik, Ricardo Lopes, Klaas Jan de Kraker, and Rafael Bidarra

Abstract—Computer games often take place in extensive virtual
worlds, attractive for roaming and exploring. Unfortunately,
current virtual cities can strongly hinder this kind of gameplay,
since the buildings they feature typically have replicated inte-
riors, or no interiors at all. Procedural content generation is
becoming more established, with many techniques for automati-
cally creating specific building elements. However, the integration
of these techniques to form complete buildings is still largely
unexplored, limiting their application to open game worlds. We
propose a novel approach that integrates existing procedural
techniques to generate such buildings. With minimal extensions,
individual techniques can be coordinated to create buildings with
consistently interrelated exteriors and interiors, as in the real
world. Our solution offers a framework where various procedural
techniques communicate with a moderator, which is responsible
for negotiating the placement of building elements, making use
of a library of semantic classes and constraints. We demonstrate
the applicability of our approach by presenting several examples
featuring the integration of a facade shape grammar, two different
floor plan layout generation techniques, and furniture placement
techniques. We conclude that this approach allows one to preserve
the individual qualities of existing procedural techniques, while
assisting the consistency maintenance of the generated buildings.

Index Terms—Facade shape grammars, floor plan generation
techniques, procedural modeling of buildings, semantic modeling.

I. INTRODUCTION

AMES increasingly take place in highly detailed virtual

worlds, often featuring complex urban environments.
Notable recent examples include Assassin’s Creed, Elder
Scrolls, and Grand Theft Auto series, where players explore
extensive cities filled with detailed and visually appealing
fagades. Typically, these cities are modeled by hand, requiring
an enormous amount of effort and huge production costs for
game development studios. Grand Theft Auto IV, for example,

Manuscript received November 08, 2010; revised March 23, 2011; accepted
July 14, 2011. Date of publication July 25, 2011; date of current version
September 14, 2011. This work was supported in part by the GATE project,
funded by The Netherlands Organization for Scientific Research (NWO), and
by the Portuguese Foundation for Science and Technology (FCT) under Grant
SFRH/BD/62463/2009.

T. Tutenel, R. Lopes, and R. Bidarra are with the Computer Graphics Group,
Delft University of Technology, Delft 2628 CD, The Netherlands (e-mail:
T.Tutenel@tudelft.nl; r.lopes@tudelft.nl; r.bidarra@tudelft.nl).

R. M. Smelik and K. J. de Kraker are with the Modelling, Simulation and
Gaming Department, Netherlands Organization for Applied Scientific Research
(TNO), The Hague NL-2597, The Netherlands (e-mail: ruben.smelik@tno.nl;
klaas_jan.dekraker@tno.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2011.2162842

took over 1000 people, more than three years and $100 million
to complete.

In such games, the whole virtual environment is required
to have a visually stunning appearance, regardless of whether
buildings are important to the main storyline. However, the lack
of time and resources constrains game developers to create the
unimportant collateral buildings in a fast and minimal way, for
example, featuring manually detailed fagades but either no in-
teriors or a fixed set of interiors, replicated all over the city.

This lack of integral, “enter-anywhere” buildings is espe-
cially noticeable in recent open world games, such as Red Dead
Redemption or Fable III, which are raising the bar on sandbox-
based gameplay. In fact, their game mechanics offer more and
more freedom to roam around, encouraging to divert from the
main objective to explore the environment, or even use it in
more creative ways. The importance players are giving to spon-
taneous exploration is also evidenced by the success of the ex-
ploration-based game Minecraft. Precisely in this type of game,
the above mentioned finalized buildings could significantly im-
prove the gameplay. Not only could the motto “exploration-for-
the-sake-of-it” be then much better realized, but urban environ-
ments could be made fully accessible for players to use them
as they please. In Assassin’s Creed, for example, strategic, de-
signer-placed hay stacks could be used to hide from enemy pa-
trols. With “enter-anywhere” buildings, any house could poten-
tially serve that purpose.

However, the cost of manually modeling interiors for every
building is simply unbearable, hence, the urgent need and in-
terest for methods that can automatically create such buildings.
Procedural content generation techniques are expected to play
an important role in solving this problem, even though they are
often far from matching the expressive range of manual mod-
eling. In particular, it seems very affordable to have procedural
methods automatically generate large portions of content, re-
gardless of whether this is ready for (pre)production or it is only
a basis for being further worked out by an artist.

More formally, we need buildings exhibiting two character-
istics, each of them presenting its own challenge.

1) Complete buildings, i.e., “enter-anywhere” buildings con-
sisting of not only a fagade, but also interiors, stairs, furni-
ture, etc. The main challenge is the time it takes to produce
all that content, which recommends the use of procedural
content generation methods.

2) Congruent buildings, i.e., buildings with plausible ele-
ments in harmony and without conflicting elements (in
Section III we will discuss several kinds of conflicts).
The main challenge here is that most current procedural
techniques generate just one type of building element,
without taking into account the remaining elements.

1943-068X/$26.00 © 2011 IEEE

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 275

Within the context of this research, including the title of this
paper, buildings that are both complete and congruent are des-
ignated consistent buildings.

Current research in the area focuses on procedural methods
for generating many aspects or elements of urban environments,
including road networks, building lots, facades, roofs, and floor
plans. However, the generation of these elements poses its own
challenges, as evidenced by the use of very distinct techniques
to solve each of them. Unfortunately, the integration of all those
procedural techniques to yield a combined output is still in its
infancy [1].

There are basically two approaches to attempt such inte-
gration: 1) for each type of building, develop a new dedicated
generator that bundles a few techniques selected, implemented,
and integrated in an ad hoc fashion for that specific purpose;
a recent example of this is the dedicated approach to generate
dwelling houses proposed in [2], which will be further analyzed
in Section II; or 2) develop a generic framework that is able
to integrate a variety of existing techniques, already mature,
implemented and proven, into a versatile procedural content
generator.

We argue that the second approach above is superior to the
first, regarding both flexibility, expressive power, and ease of
use. In this paper, we propose such a framework, which is able to
integrate any procedural techniques, and combine them to gen-
erate all sorts of consistent buildings, as efficiently as a dedi-
cated approach.

With dedicated solutions, the strong coupling among building
elements is enforced by ad hoc mechanisms for maintaining the
consistency of the resulting building. Our main contribution,
in contrast, is a semantic approach that brings this consistency
management among building elements to an independent cen-
tral framework, without significantly harming performance. The
working of this framework is inspired on our semantic modeling
background [3], [4].

With this approach, procedural techniques have a common
framework on which they are led to collaborate in the genera-
tion of consistent buildings. Moreover, this approach is not lim-
ited to fagcades and floor plans: with minor modifications, any
existing procedural techniques deemed suitable for contributing
to complete building generation (e.g., roof or lot shape genera-
tion, furniture placement) can be loosely coupled and integrated
in the generation process.

This versatility in reusing and recombining existing proce-
dural techniques brings about other advantages, when compared
to dedicated approaches. For one, developers can focus on local
specialization, i.e., concentrate on improving individual gener-
ation techniques for a building element, while the framework
handles the integration of its output into the complete building.
Also, replacing old or underperforming techniques for specific
building elements, or trying out new ones, becomes much easier,
increasing development flexibility.

This paper is structured as follows. In Section II, we survey
different current techniques contributing to the generation of
buildings, with a special focus on techniques that still lack in-
tegration: fagade and floor plan generation. In Section III, we
describe in detail our semantic approach for integrating proce-
dural techniques. In Section IV, we show several results of this

approach, using examples where a facade grammar, a floor plan,
and a furniture placement method are integrated. In Section V,
we briefly discuss the approach in the light of its results. Finally,
in Section VI, we present our conclusions and future work.

II. RELATED WORK

Procedural generation techniques have been proposed for al-
most every aspect of virtual worlds, ranging from vast land-
scapes (see, e.g., [5] and [6]) to urban environments (see, e.g.,
[7]1-[10]). In urban settings, extensive research has been done
towards procedural buildings. So far, most researchers proposed
independent methods to generate the exterior, i.e., the facade,
and the interior, i.e., the floor plan, of buildings. There are some
recent techniques that attempt to integrate these two aspects, al-
though showing some limitations. They are essentially stand-
alone methods that: 1) focus more on one aspect, neglecting the
other, and 2) do not reuse existing methods.

A. Facade Generation

In the field of automated generation of building fagades,
L-systems were among the first techniques to be proposed [7].
These rewriting systems create buildings by manipulating an
initial arbitrary ground plan (a lot shape) with transformation
and extrusion modules.

To obtain more interesting building shapes, several ap-
proaches have been devised. Wonka et al. [11] introduced
the concept of split grammar, a formal context-free grammar
designed to produce building models. The split grammar
resembles an L-system where shapes are primitive elements
rather than symbols. Coelho ef al. [12] proposed an urban
modeling process that is based on L-systems as well. This
process generates, from external data, a tree-like description
of the overall scene structure. L-systems are used to generate
detailed building models that emerge from the abstract set of
data.

In recent years, a more specialized approach, the CGA shape
grammar, has been applied to building fagades by Miiller ef al.
[13]. Shape grammars have been used and described before, es-
pecially in the architectural domain [14]-[16]. Architects have
described shape grammars as languages of design, supported by
a vocabulary of shape rules. Shape rules are specified as spatial
relations, where a shape on the right-hand side of the rule is pro-
duced and replaces the symbol on the left-hand side (depicting
when the rule can be applied).

In Miiller ef al.’s case [13] and unlike a split grammar, the
shape grammar uses context-sensitive rules which allow the
possibility of modeling roofs and rotated shapes. They start with
a union of several volumetric shapes (the building boundary)
which is divided into floors. The resulting facades are further
subdivided, through shape rules, into walls, windows, and
doors. Yong et al. [17] also use an extended shape grammar, but
they start at the city level, producing streets, housing blocks,
roads, and, in further productions, houses with components
such as gates, windows, walls, and roofs. Shape grammars have
become the most accepted technique for generating building
fagades, as evidenced by its commercial release [18]. Epic
Games also included in their commercial game engine Unreal

276 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Engine 3[19] a procedural artist-driven tool for constructing
buildings used in the development of city-based games [20].
The procedural system uses rulesets, similar to shape grammar
rules, to split facades into scopes and automatically place
meshes on them.

More recently, Miiller et al. [21] used a very different ap-
proach for constructing building fagades. Their method takes
an image of a real building facade as input and is able to re-
construct a detailed 3-D fagade model, combining imaging and
shape grammar generation techniques. Chen et al. [22] also pro-
posed a method for creating building facades from images, but
in this case using hand sketches as input.

On a different direction, Greuter et al. [23] proposed an
approach where a primitive form of the integrated generation
of both fagades and floor plans was considered. Initially, they
create a floor plan by combining several primitive 2-D shapes,
which are then extruded to different heights. This approach is
most useful for simple office buildings. Although the concept
of a generated floor plan is present, it is only used for extruding
building fagades and not as a room layout.

Although all of the above approaches can generate visually
convincing building fagades, Finkenzeller and Bender [24], [25]
note that semantic information, regarding the role of each shape
within the complete building, is missing. They propose to cap-
ture this semantic information in a typed graph, so that detailed
building facades (doors, windows, balconies, cornices, orna-
ments) can be generated, in different styles, and applied to the
same building outlines. Starting with a rough building outline,
building style graphs can be applied to this model, resulting in
an intermediate semantic graph representation of the building.
In the last step, geometry is created based on the intermediate
model, and textures are applied, resulting in a complete 3-D
building.

B. Floor Plan Generation

To create complete buildings, interiors must be added to the
fagade. The procedural generation of building floor plans, i.e.,
suitable inner room layouts, has been the focus of several re-
searchers.

Rau-Chaplin et al. [26] show that shape grammars, often ap-
plied to building fagades, can also create floor plans. In this case,
shape grammars are used to create a plan schema containing
basic room units. These individual room units are recognized
and grouped to define functional zones like public, private, or
semiprivate spaces. Individual functions are then assigned to
each room, which are filled with furniture, by fitting predefined
layout tiles from a library of individual room layouts.

On a different direction, Hahn et al. [27] present a subdi-
vision method tailored for generating, on the fly, office build-
ings. The initial building structure is split up into a number
of floors. On each of them, further subdivisions are applied to
create a hallway zone and individual rooms. A notable feature of
this method is that floors and rooms are generated or discarded
based on the player’s position. Reusing the same random seed
in the procedure assures that discarded rooms can be properly
restored.

Marson and Musse [28] also introduce a room subdivision
method, but based on squarified treemaps. They start with the

basic 2-D shape of the building and a list of rooms, with desired
area and functionality. Treemaps recursively subdivide an area
into smaller areas, e.g., building shape, functional zones, rooms.
In a final step, corridors are automatically created to connect
unreachable rooms.

Martin [29] proposes a graph-based method, in which nodes
represent the rooms and edges correspond to connections be-
tween rooms (e.g., a door). Public, private, and stick-on rooms
(e.g., closets, pantries) are gradually added to the graph by a
user-defined grammar. This graph is transformed to a spatial
layout, and for each node, a specific amount of pressure” is
applied to make the room expand to the desired size. Lopes et
al. [30] also propose an expansion-based method, which grows
rooms in a geometric grid representing the building lot. The
initial placement of room seeds is determined by a constraint
solving algorithm that takes room adjacencies, connectivities,
and functional zones into account.

Tutenel et al. [31] applied a generic semantic layout solving
approach to expansion-based floor plan generation. In this ap-
proach, every type of room is mapped to a class in a semantic
library and for each of these classes relationships can be de-
fined. In this context, relationships will define room-to-room
adjacency. However, other constraints can be defined as well,
e.g., place the kitchen next to the garden, or the garage next to
the street. For each room to be placed, a rectangle of minimum
size is positioned at a location where all defined relation con-
straints hold, and all these rooms expand until they touch each
other.

Charman [32] gives an overview of constraint solving tech-
niques that can be applied to room layout generation, if seen
as a space planning problem. For example, the planner the au-
thor proposes works on the basis of axis-aligned 2-D rectan-
gles with variable position, orientation, and dimension parame-
ters, for which users can express geometric constraints, possibly
combined with logical and numerical operators.

Merrel et al. [2] recently proposed a method for generating
residential building layouts. Although this approach creates
complete buildings, it is highly focused on floor plan gen-
eration. The authors use a Bayesian network, trained with
real-world data, to expand a set of high level requirements
(e.g., number of rooms) into a complete architectural program
(e.g., room adjacencies, area, and aspect ratio). These archi-
tectural programs are then realized into the 2-D shapes of the
floor plans, through stochastic optimization over the space
of possible building layouts. Three-dimensional models are
generated from different style templates to fit the structure of
the floor plan, including external windows, doors, and roofs.
Their results are different from the integration approach we
propose, since their method: 1) is specific for generating resi-
dential buildings, 2) cannot create specific fagade patterns and
appearance, and 3) the fagade always emerges from the floor
plan, and, therefore, cannot steer the generation process.

III. SEMANTIC INTEGRATION APPROACH

In this section, we describe in detail our semantic approach to
integrate existing procedural techniques for generating consis-
tent buildings, as defined in Section I, i.e., buildings consisting

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 271

Conductor

Plan
item

Plan >

for each

combined
geometry

|—|I:I

Y

get requested component Plan

item

Procedural generation
components

_ N\
Component 1

e.g. facade grammar,

parameters

returns geometry
created by component

Semantic moderator

technique
specific
interface

floorplan generation...

Existing

generic
interface

Semantic library

instantiate

Class

technique

Constraint

Semantic building model

Fig. 1. Framework for integrating procedural techniques: moderator (with semantic library and generic interface), components, wrappers, conductor, and plan.

of different elements, without any conflict among them. Typ-
ically, each procedural technique is able to generate one spe-
cific element of a building (e.g., fagcade, floor plan, furniture,
lot shape), but mostly without much regard for other building
elements. Therefore, the main challenge of integrating those in-
dividual components is foremost to watch over the consistency
of the building, either avoiding or properly handling any con-
flicts arising among building elements.

The main idea behind our approach is to establish a semantic
moderator, which shares relevant building information with the
individual procedural components, so that they can make good
and timely decisions. This information, combined by the mod-
erator into a unified semantic model of the building, forms the
basis for the advice that it provides to individual components
in order to avoid conflicts, i.e., inconsistent results. In our ap-
proach, we distinguish three categories of building elements
conflicts.

» Intersection conflicts, occurring when building elements

that should not intersect each other, overlap in some way.
For example, fagade windows should not intersect inner
walls, furniture should not obstruct inner doors, etc.

* Functional conflicts, occurring when building elements
with incompatible roles are associated. For example,
bathrooms should not have the same type of window as
bedrooms.

* Exclusion conflicts, occurring when a required unique
building element is placed such that it becomes imprac-
ticable in the resulting building, and has to be removed
from it. For example, a required fireplace should only
be placed on one of the possible locations where it has a
feasible path to the (fagade or roof) chimney. This conflict
is particularly problematic with components that do not
allow any backtracking, which unfortunately is often the
case.

Fig. 1 outlines the framework architecture to support this inte-

gration approach. The various procedural components are made

available through a wrapper interface and are invoked according
to a building plan. The moderator, in turn, helps prevent the con-
flict types mentioned above, managing the communication with
the procedural components, and providing them with building
advice. In the following paragraphs, we explain this framework
in detail.

A. Semantic Moderator

The semantic moderator is responsible for watching over the
consistency of the integrated building, by examining and ap-
proving the requests of each procedural component. For this,
it maintains a semantic building model, which represents all
building elements, including their attributes and constraints, by
means of semantic elements. Each of these semantic elements is
an instance of a class described in the so-called semantic library
[33], and carries therefore all its semantics.

The semantic library provides a hierarchical class database,
partly based on the WordNet ontology [34], where each class
specifies and represents object semantics, i.e., all information,
beyond its 3-D geometric model, that helps convey the meaning
and the role of an object in the virtual world. This includes its
attributes, properties, services, and also constraints and relation-
ships, possibly with objects of other classes [35]. Each class, and
its instances, in this database inherits this information from its
parents, comparable to the object-oriented programming para-
digm. This entire knowledge base is represented and stored in
a purpose-built relational database. To increase performance,
the necessary classes are prefetched into memory, e.g., in this
case, the class building and all related classes of building. Natu-
rally, all instances of these classes are ultimately associated with
a specific geometric model (e.g., a large brown, leather sofa).
Among other uses, the semantic library has been successfully
deployed for handling object interactions in games using ser-
vices [35], for driving a semantic layout solving approach [33],
and for supporting the generation of procedural filters [36].

278 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

The semantic building model therefore integrates a flexible
and rich representation of building elements (e.g., floors,
rooms, windows, walls, chairs), including their attributes (e.g.,
the area of a room), constraints (e.g., an outer door should lead
to a public room), roles (e.g., public and private rooms), or
relationships (e.g., adjacency between rooms). This semantics,
as we will see, is instrumental in the consistency maintenance
performed by the moderator, particularly for conflict detec-
tion and identification. Semantic elements are also associated
with some minimal geometric data, including a position, an
orientation, and a primitive shape, which is an abstracted
representation of the building element’s actual 3-D geometry
(e.g., a line, polygon, extruded line, extruded polygon).

Each procedural component, in its generation procedure, can
resort to the moderator in a number of ways, which we now
describe in detail.

1) Register a Building Element: A procedural component
can register a new building element with the moderator. This
can either approve the registration, meaning that the new
building element is deemed valid for integration in the building
model, or reject it, meaning that the new building element
causes a conflict that cannot be handled in any other way. In
the latter case, the component should retract its conflicting
element. For each registered building element, a corresponding
semantic element is instantiated and inserted in the semantic
building model, possibly with specific values for some of the
class attributes; for example, a window instance could have a
boolean attribute value indicating whether the window glass is
tinted.

2) Register a Constraint: Besides new building elements,
components can also register new constraints, to be satisfied
between two building elements. A variety of different constraint
types can be devised, enforcing, e.g., connectivity, proximity,
adjacency, or nonadjacency between elements. Constraints as
these have two operands, indicating the two semantic elements
they act upon; or, more precisely, those operands consist of
the respective semantic class descriptions, possibly containing
some attribute values to narrow down the constraint definition.
For example, we can declare that nontinted windows cannot
be adjacent to private rooms with the constraint non_adja-
cency(window{tinted.false}, private room). These constraints,
together with other constraints available in the semantic library,
are used in building inquiries, as discussed next.

3) Inquire About a Building Element: First, components can
inquire the moderator about registered building elements. Such
inquiries provide components with advice based on up-to-date
information on the integrated building model, which they can
incorporate in their decision process for creating new building
elements. For example, components can inquire about which
room is adjacent to this exterior wall, which rooms share this
interior wall, what is the function of this room, etc.

Inquiries can also be used to find out whether a potential
building element could be successfully registered, i.e., approved
as valid by the moderator. Such an inquiry does not imply regis-
tration, or even creation, of elements, and it can be generically
defined as follows: Can an instance of class ¢, with attribute
values 1 . . . a,, with shape s be placed at position p and orien-
tation 0? In order to answer such inquiries, the moderator first

gathers all constraints mentioning class ¢ and, for each of them,
evaluates whether they are satisfied for shape s at position p and
orientation o. For example, say we want to inquire whether we
can place a nontinted window of shape s at position p with ori-
entation o, i.e., inquire(windowf{tinted.false}, s, p, o). The ex-
ample constraint defined above references a window class with
attribute tinted equal to false. Therefore, the moderator checks
whether shape s, with the given position and orientation, is adja-
cent to the shape of any private room. If so, that non_adjacency
constraint is not satisfied, and, therefore, the building advice is
negative. This same constraint evaluation mechanism is used
to evaluate the previously described inquiries, e.g., to inquire
which type of room is adjacent to a particular wall.

The methods to evaluate these constraints were initially built
for the semantic layout solving approach [31]. For this purpose,
we built methods that, given a scene, an object shape and geo-
metric constraints between the object shape and other shapes
inside the scene, can generate all valid positions and rotations
for that new object. For a more detailed explanation of how the
solver works, how these methods were implemented, and why
these methods were built instead of using existing geometric
constraint solving techniques, we refer the reader to [31]. In the
semantic moderator these methods are used to identify whether
a building element at a given position in the scene is placed ac-
cording to its related constraints, as is explained above. If the
position for the building element conflicts with the related con-
straints, then a negative building advice is given, which should
be handled by the component, e.g., by retracting the element.

These constraints are represented in the following way:
source feature (or object) - relationship type - target feature
(or object), with a number of parameters (depending on the
relationship type). For example: vase class - on relationship -
top feature of cupboard class, represents that a vase should be
placed on the top of a cupboard. The declared constraints in the
semantic library can be mapped in a straightforward way to the
actual constraints used by the layout solving methods.

Since semantic elements use primitive shapes to represent the
shape of building elements in the moderator, the required geo-
metric tests (adjacency, overlap) are relatively simple and have
therefore very little impact on the overall performance at the
expense of a marginal amount of accuracy. Typically, it is safe
to assume that building elements, such as windows, can be rea-
soned with using a primitive shape instead of a highly detailed
mesh including, e.g., the ornamentation of a window frame.

4) Select Valid Positions for a Building Element: Finally, a
procedural component can approach the moderator with a list
of candidate positions for a given building element, requesting
it to select a given number of valid positions for that building
element. This is typically used for specific types of building el-
ements that need to be placed once (or any fixed number of
times) in the entire building, such as an external ventilation
unit, satellite dish, or chimney. Explicitly selecting a valid lo-
cation to later place the element is a useful advice for proce-
dural components that do not allow backtracking. This function
is particularly suited to handle exclusion conflicts, explained at
the beginning of this section. Validation of each candidate posi-
tion is handled in the same way as described above: for each of
the candidate locations, the moderator will check whether the

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 279

existing constraints are satisfied, in which case the location is
deemed valid. From the valid candidate locations, it selects the
requested number of positions at random. These selected posi-
tions are marked within the semantic building model.

Using the above moderator functionality, procedural compo-
nents are indirectly made aware of the results of each other’s
actions, through communication with the moderator. By regis-
tering, inquiring, and selecting, components are provided valu-
able building advice, to which they can react in a timely manner
and thus prevent the occurrence of intersection, functional, and
exclusion conflicts.

B. Wrapping Components

As highlighted in Section I, the integration of existing pro-
cedural components within the same framework has attractive
advantages. The counterpart is, of course, that there is some im-
plementation effort involved. We now describe the implemen-
tation steps required and the impact of the integration process
on each procedural component.

The main two implementation steps that need to be taken are
1) implementing a wrapper interface for the component, and 2)
modifying its generation procedure to include the proper se-
mantic moderator queries (i.e., registering elements and con-
straints, inquiring about building elements, and requesting and
inquiring about marked positions).

The main purpose for a component wrapper is to provide ac-
cess to the functionality of the moderator using a generic inter-
face, as shown in Fig. 1. Such a wrapper only needs to be im-
plemented once for each procedural component, regardless of
the number of other components or the type of building being
generated.

The secondary purpose of the wrapper is to allow components
to be notified, through the moderator, of the results of actions
performed by another component. For this, the moderator has a
notification mechanism that informs all components of changes
in the semantic building model. Through its wrapper, in turn,
a component can handle specific notification events, triggering
their own actions when another component performs a specific
action. For example, a texture generator can create an appro-
priate wallpaper when an inner wall is registered by a floor plan
generation component.

The final purpose of the wrapper is to handle the conversion
between a component’s specific shape representation (i.e., data
structure, coordinate system, etc.) and the common shape format
used by the moderator. Whenever a new building element is reg-
istered, a notification event is provided to all other components.
However, not all components will necessarily have to do some-
thing with it; e.g., a facade grammar component typically does
not need to know the positions of all the furniture placed by a
layout component. Only the components that require informa-
tion on that element need to convert it to their internal format.
As a result, introducing more components will not necessarily
have an exponential impact on the computational efficiency of
the building generation.

Of course, a specific wrapper can include more functionality
relevant to its procedural component. After communicating with
the moderator, a component might need to perform additional

actions. Typical examples include: 1) what to do when an ele-
ment cannot be registered, or 2) immediately selecting a posi-
tion and creating a building element after getting a number of
marked locations for this element. These additional actions can
be implemented within the wrapper methods or directly in the
existing procedural technique, if that is preferable.

Finally, it should be mentioned that minor alterations will
need to be made directly in the component’s procedural genera-
tion method. At least, the wrapper methods need to be invoked
throughout it at the correct time. An example is the registra-
tion of elements with the moderator before they are definitively
placed. Still, the implementation of the wrapper interface is the
most important step required for the successful integration of
a new procedural component. After a component’s wrapper is
implemented in the correct way and the mentioned minor alter-
ations to the procedure have been performed, that component
becomes and remains integrated within our framework. All its
functionality, including notification events, remains intact re-
gardless of changes to, and replacements of, other components.

C. Plan and Conductor

Our semantic approach described so far enables components
to collaborate, through their wrappers, in the generation of con-
sistent buildings. However, the invocation of the various com-
ponents still needs to be orchestrated in such a way that they
constructively work together, i.e., following the correct steps in
the appropriate order. The order of invocation of components
often has an influence on the end result, and designers therefore
need to have sufficient control over this.

To support this degree of control, we created the concept of
a conductor and its building plan. Plans are simple documents
where one can declare which components should be used, when
and how to use them. Designers can create separate plans for
different building types using the same integrated components.
Primarily, designers use plans to control the sequence in which
components are invoked, and also to provide values for the input
parameters that each component requires. Varying these is what
allows one to define different building types. For example, using
different values for the style and lot shape parameters of a fagade
grammar allows one to create different building fagades. Bear in
mind that multiple executions of the same plan but with different
random seeds, typically result in variations of the same building
type, since most procedural techniques are stochastic in nature.

Currently, building plans are specified using a declarative
scripting language developed for this framework. Among other
things, this language provides commands for declaring the com-
ponents used in the plan, and invoking them in a desired order.
The invocation of a component, declared using the execute com-
mand with the respective parameters, is supported through a call
to its wrapper. An example of the syntax of this language is
shown in the excerpt of one of the examples (Villa Neos, dis-
cussed in Section IV-D), shown in Table I.

In particular cases, a straightforward one-step sequential in-
vocation of a set of components can be sufficient for generating
a consistent building. This is especially the case for situations
where the constraints and dependencies between the building
elements produced by the different components are fairly loose.
An example is generating the facade of a one-floor building after

280

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

TABLE I
EXCERPT OF THE BUILDING PLAN FOR THE VILLA NEOS EXAMPLE (SEE SECTION IV-D)

// First , we list assets, i.e. text files

asset "data/neos_floorl.txt" floorl1Params;
asset "data/neos_floor2.txt" floor2Params;
asset "data/neos_facade.txt" facadeParams;

in which some parameters for components are defined

// Now we import the libraries for the different components
import "CGAShapeGrammar.dll" shape ;

import "LopesFloorplanGenerator.dll" interior;

import "TutenellayoutSolving.dll" solver;

// We first invoke the CGA shape grammar component

facade = execute(shape:: Component, lot, facadeParams);

// The parameter ’lot’ is a predefined variable for the building lot on which a plan is executed
// We query the moderator for the building floors in the villa (created in the previous step)
flrl = moderatorQuery("class: building floor{floor number:1}");

flr2 = moderatorQuery("class: building floor{floor number:2}");

// We invoke the floor plan generator to generate a room layout for both floors

firl ,
flr2 ,

floorplan execute (interior :: Component,

floorplan execute (interior :: Component,

// Resume the shape grammar for remaining details ,

resume (shape :: Component, facade);

// Now we invoke layout solving procedures to fill
layout = execute(solver :: Component,
layout = execute(solver :: Component,

"../data/kitchen.proc",

floor1Params);

floor2Params) ;

e.g. texture interior walls, etc.

the rooms with furniture

moderatorQuery("class: kitchen"));

"../data/bathroom.proc", moderatorQuery("class: bathroom"));

the complete creation of a floor plan. If the only constraint is to
avoid intersection conflicts between windows and interior walls,
and the invocation of both components follows the standard pro-
cedure of registration and inquiries, then their sequential invo-
cation can create a multitude of consistent building variants.

However, such cases are rare. For the vast majority of
buildings, stronger dependencies are present and step-based
execution of components is needed for consistent results.
For example, a fagade generator creating a multiple-floor
building might need to wait for the generation of one-floor
plan to complete, before resuming with the next floor’s fagade.
Plans can include step-based execution of components if the
wrappers are implemented to support it. Note that, although
some components can execute in a stepwise fashion, that is
unfortunately not enough to support backtracking, i.e., undo
or redo a step of a specific component that turned out to yield
an unsuitable configuration. The main reason for this is that
to support backtracking in our approach, every component
should support backtracking as well, and this would be an
unreasonable demand since it would exclude many interesting
procedural techniques.

Plans are also responsible for another mechanism: sharing
and passing building elements from one component to the next,
to allow for further detailing by the latter. This is an indirect
type of communication: the moderator distributes among com-
ponents the semantic elements representing the building ele-
ments, according to the needs explicitly specified in the plan. A
good example of this are building elements produced by a floor
plan component: after registration, floor plan elements could be
passed to a shape grammar to detail its geometry or texture.
The plan specifies and controls if and how registered elements
are passed to which other components. For instance, a plan can
specify what the shape symbol of the semantic element (origi-
nally created by the floor plan component) should be and, op-
tionally, which semantic attributes are mapped to shape param-
eters.

As follows from Fig. 1, the conductor is responsible for exe-
cuting plan steps, or items, in the correct order. The conductor’s
function is to parse the plan and, for each item, invoke the cor-
rect component through its wrapper. The conductor automati-
cally maps commands in plan items, such as execute or resume,
to the corresponding wrapper methods.

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 281

Finally, the conductor is also responsible for assembling the
resulting 3-D geometry generated by each component. For this,
the conductor maintains a building model graph, where each
node contains the geometry of a building element generated by
a component. Currently, components are responsible for sup-
plying this geometry defined in the common coordinate system
and scale. After all geometry has been generated, this graph is
optimized for interactive rendering.

IV. RESULTS

This section aims at illustrating the potential of our inte-
gration framework, as well as demonstrating its feasibility
by means of three examples of automatically generated con-
sistent buildings. For this, we have selected, implemented,
and integrated four independent procedural components in
our framework. These four components generate facades, floor
plans (two different components), and interior furniture layouts.
Moreover, the examples of consistent buildings discussed in
this section also help make clear that component integration
requires only minor modifications to each of the techniques.

To procedurally generate the exterior of our buildings, we se-
lected the CGA-shape grammar proposed by Miiller et al. [13].
This was a natural choice since the CGA-shape grammar is a
well-known and accepted method, and has become somewhat
of a standard for procedural building facades. We implemented
a shape rewriting system and a subset of the CGA’s shape op-
erations, with which we can define production rules to generate
both the volumetric shape of buildings and their facade details.

To better evidence the ease of integration of components in
our framework, we experimented with two alternative tech-
niques for generating floor plans. The first method we integrated
is our own grid-based procedural floor plan generation method
[30], which is not based on rewriting or shape subdivision.
This choice helps demonstrate that the integration works for
two very distinct components, i.e., a (facade shape) grammar
and an algorithmic method. The second method we integrated
is a floor plan generator based on squarified treemaps [28]. We
chose this second method to demonstrate that the integration
of new methods in the framework is relatively easy. It also
highlights that, for a specific building element, we can switch to
a different generation component simply by changing a couple
of lines in the building plan.

The last procedural component we selected is a technique for
furniture placement, supporting object layout solving in arbi-
trary spaces. For this purpose, our own semantics-based layout
solver [31] was found very suitable. For details on the function-
ality and inner working of each of the selected techniques, we
refer to the respective publications.

Combining these four components, we have composed
building plans for three different building types: a motel com-
plex, an American house, and a Greek holiday villa. We believe
these examples are very illustrative of the versatility of our
integration approach, and clearly highlight the different aspects
of building consistency.

A. Implementation of Wrappers

For each component, we created a specific wrapper to com-
municate with the semantic moderator. This wrapper provides

the necessary calls and notifications for registration of building
elements and inquiries for building advice. Furthermore, it pro-
vides conversion of generated results from the component-spe-
cific model (e.g., 3-D geometry, a 2-D grid of tiles, etc.) to
the common model used in the moderator, ensuring the reg-
istered elements scale, orientation, and location are coherent.
As explained in Section III, wrappers are not required to con-
vert all building elements received through the wrapper, but can
be more selective and filter for relevant information from other
components. All of the above functionality was implemented
for the fagade, floor plan, and interior layout components.

Of course, in each component, the usage of its wrapper had
to be implemented as well. For instance, for the floor plan and
interior layout components, registration calls or inquiries were
added at specific points in the algorithm. For the shape grammar
component, we provided each call as a shape operation (registra-
tion) or function (inquiry). They were written within a grammar
definition file as part of the normal shape derivation rules. This
made the interaction with the moderator easy and more intuitive,
e.g., within a conditional rewriting rule we can inquire whether
deriving the current shape to a window is allowed here, and if
not, rewrite it as a plain wall segment instead.

As mentioned in Section III, the building plan can determine
not only when but also to what extent each component is exe-
cuted, allowing for interleaved, step-by-step execution of com-
ponents. For this, break and continue calls were added for the
wrapper for each component. A break call can have component-
specific parameters. For instance, for a shape grammar compo-
nent, a break point can be placed at a specific shape symbol,
halting executing when that symbol is about to be derived.

In the following sections, the three examples will be outlined.
For each of them, we explain their unique attributes, outline the
created building plan, and show the generated results.

B. Example 1: Motel Aloha

As a first example of a building created with several inte-
grated components, we consider a typical motel. The motel
lot consists of a number of sections: an entrance and reception
building, two parking lots (one of which is covered), a swim-
ming pool, and three motel room aisles. The motel rooms come
in two variants, a basic room setup with bed and bathroom,
and a more spacious suite featuring a living room and kitchen
combination.

1) Building Plan: The plan for this motel uses three proce-
dural components (grid-based floor plan generator [30], CGA-
shape grammar [13], and the semantic layout solver [31]), and
is divided in six steps, executed by the component indicated in
brackets:

1) lay out motel lot in several sections (floor plan);

2) create exterior geometry of each section (shape grammar);

3) generate and iterate the basic room layout for both left and

right building aisles (floor plan);

4) generate and iterate the suite layout (floor plan);

5) detail building facades (shape grammar);

6) add furniture to each motel room (furniture).

2) Generation Results: See Fig. 2 for an example of the
motel complex, resulting from this plan. Fig. 2(a) illustrates the
intermediate layouts generated by the floor plan component: (1)

282 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

throom

@ Great
room .
Bathroom POOI Bathroom
Parkin
Motel g Motel
room room
2 Covered (4)
parking Entrance

©

@

Fig.2. Generation of a motel complex: (a) layouts generated at three different steps of the plan, by the floor plan component, (1) lot, (2) basic room for left building
aisle, (3) suite room for main building aisle, (4) basic room for right building aisle; (b) front view of the motel lot, with three building aisles, two parking lots, and
a swimming pool; (c) top view of different room layouts (basic and suite) and matching building fagade regular pattern (d) focus on suite room layout example.

shows the layout of the motel lot, produced in the first step of
the plan. The individual basic and suite room layouts generated
for the left, main, and right building are shown, respectively, in
Fig. 2(a) (2)—(4). Fig. 2(b) gives an overview of the motel com-
plex model. In Fig. 2(c), and in the closeup Fig. 2(d), we see the
layout of the two types of rooms, including the matching furni-
ture models.

In our implementation, which is not optimized for perfor-
mance, the motel took on average 12s to generate on a consumer
PC. Only about 5% of this time was spent on the semantic mod-
eration of procedural components. The majority of the compu-
tation time was thus spent with the procedural generation com-
ponents, such as the shape grammar component.

3) Plan Execution: As follows from the building plan above,
the floor plan is responsible for generating both the layouts of
the sections in the lot and the interior layout for the two types
of rooms. These layouts are sequentially generated by the floor
plan component and are registered with the semantic moderator.
They do not include windows, external doors, or other fagade
elements, since these are created by the shape grammar compo-
nent, further on in the plan (in step 5).

Layout of the motel lot layout is stochastic, so that the layout
and the shape of each of the sections (parking, motel buildings,
etc.) slightly differs each time this plan is executed. To generate
the lot layout, the plan considers each section to be a “room”
with a certain weight and uses the floor plan component to gen-
erate a suitable layout, adhering to defined adjacency constraints
(e.g., the entrance is adjacent to the parking lot). These sections,

after registration with the moderator, are introduced to the shape
grammar component as polygonal shapes, with the name of their
semantic class mapped to a shape grammar symbol. As a first
pass, the shape grammar rewrites each section, except for the
motel buildings, to their final detailed geometric models. For
the motel buildings, only the volumetric shapes are derived and
registered, after which the shape grammar component halts its
execution (step 2).

The volumetric shapes of the motel buildings are passed to
the floor plan component. Unlike typical houses, the floor plan
for the motel is generated in a repetitive mode. In this mode,
one layout is generated and repeated over all the separate motel
rooms. Both the basic and the suite variants are generated in
this way. We included this repetitive layout here to show that it
is possible to generate a uniform structure using the plan, which
could be desirable for a motel or an office space. Of course, this
uniform layout is not applicable to all scenarios; it is always pos-
sible to layout each room individually to obtain more variation.

The floor plan component registers the rooms it generated
with the semantic moderator, including attributes like the room
function (bathroom, bedroom, etc.). The interior walls are reg-
istered per continuous segment and introduced to the shape tree
of the halted shape grammar component.

The shape grammar component now resumes, deriving
shapes for the interior walls and creating the roofs and the
facade details, such as windows and doors. The facade is
constructed using a window pattern that is applied to the entire
span of a building outer wall. This repetitive pattern is specified

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 283

in the shape grammar to achieve the uniform facade patterns
typically found in motels. However, inquiries are used to de-
termine whether a window is allowed at a certain position and
whether it should be a normal or a small bathroom window.

In the last step, the furniture component is called to popu-
late each individual room, according to function. Since room
registration (by the floor plan component) included their func-
tion, this can be queried by any other component, at any time.
In the furniture component, a semantic description states what
kind of objects should be present in these rooms, and the layout
solver places these objects based on their defined relationships
and constraints. The resulting furniture layouts are similar for
equal room types although still unique for each.

C. Example 2: Meadowdale House

The following example is a typical North American one-story
house with a front porch. This type of building has a more com-

®

Fig. 3. Generation of a North American villa: (a) front view with porch; (b) back view with different types of windows and side doors depending on adjacent
rooms; (c) top view on the different rooms (great room, kitchen, bathroom, bedroom, laundry room); (d) automatically placed furniture based on room types and
object relations; (e)—(f) front view and interior view of the same plan, but now using another floor plan generation technique, that of Marson and Musse [28].

plex floor plan than a motel suite and, accordingly, the fagade
should be generated differently.

1) Building Plan: The building plan of this example is quite
straightforward, consisting of these four consecutive steps
(again executed by the components in brackets):

1) create coarse volumetric building shape (shape grammar);
2) lay out the house’s rooms (floor plan);

3) detail the complete building (shape grammar);

4) add furniture to each room (furniture).

2) Generation Results: Fig. 3 presents two example results
generated for the above Meadowdale building plan. In the first
example [Fig. 3(a)], we see that the front porch is placed at the
front wall segment of the great room, and an additional door is
placed on a side wall segment of the kitchen. Window types and
patterns match with the function of the adjacent rooms, as can
be seen in Fig. 3(b): small windows are placed in the bathroom
wall segment; and no windows, but a door and air vent, in the

284 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

laundry segments. Fig. 3(d) shows that the automatically placed
furniture matches well with the function of the rooms.

In the second example, the floor plan is generated by the tech-
nique of Marson and Musse [28]. Fig. 3(f) shows an exterior and
an interior of the same building. The most noticeable difference
between the floor plans, by comparing Fig. 3(d) and (f), is the
absence of L-shaped rooms and the presence of a corridor. Since
this technique uses squarified treemaps, it is unable to produce
nonrectangular rooms. To include a corridor, we modified the
input parameters for the floor plan component to add two bed-
rooms instead of one. This resulted in the creation of a corridor
to link the bathroom and the two bedrooms to the living room.

This second example shows some of the possible variation
in outputs of a single plan, including variation in the facade
component (e.g., textures, front porch at a different location) and
in furniture placement. Of course, the same rules for windows
types, and the position of doors and the air vent, apply in the
second example as well.

Meadowdale took on average 7 s to generate. Most of the
computation time was spent in the shape grammar and layout
solving components, each about 40% of the total computation
time. The grid-based floor plan component took 9% of the total
time to generate the fairly straightforward floor plan of Mead-
owdale. Less than 1% was spent on the semantic moderation of
procedural components.

3) Plan Execution: In the first step of the plan, the shape
grammar component determines the building footprint inside
the garden and extrudes and registers its volumetric shape. As no
further rule matches are found, the component halts and the plan
proceeds with the floor plan generation. The house has a great
room, a kitchen, a laundry room, a bathroom, and either one
bedroom [in the first example, Fig. 3(a)—(d)] or two bedrooms
[in the second example, Fig. 3(e)—(f)]. In the second example,
a corridor is automatically added by the floor plan generation
technique (see [28]).

Several adjacency constraints are defined (e.g., between the
bedroom and the bathroom and the kitchen and the great room).
A special type of adjacency constraint requires the great room to
be at the front of the building. Typically, in this type of houses,
the front porch is directly connected to the great room: on the
left-hand side of the building in the first example, and on the
right-hand side of the building in the second example.

For both the interior and exterior walls of this building, con-
tinuous wall segments are registered and passed to the shape
grammar as separate shapes. Unlike the motel example, wall
segments are used instead of complete side walls. For buildings
as motels and offices, creating a uniform fagade pattern is more
important. For residential buildings, the fagcade is more reflec-
tive of the interior layout and room function. Using wall seg-
ments ensures that each wall shape belongs to only one room,
making it easier to generate facade segments that match with
the rooms.

Again, within each room, appropriate furniture is automati-
cally placed. For instance, in the kitchen, bottom and top cabi-
nets, a stove, and a refrigerator are placed against the wall, while
a dining table surrounded by chairs is placed in the center of the
room.

D. Example 3: Villa Neos

Our last example features a modern and luxurious Greek hol-
iday villa. This villa has two floors, the second smaller than
the first one because of a large open balcony. Inside, an inte-
rior staircase connects both floors.

1) Building Plan and Components: The corresponding plan
is similar to the previous example of the North American villa,
with the exception that this building features two stories:

1) create coarse volumetric building shape (shape grammar);

2) lay out the villa’s first floor (floor plan);

3) lay out the villa’s second floor (floor plan);

4) detail the complete building (shape grammar);
5) place furniture in each room (furniture).

2) Generation Results: One of the results generated by this
plan is shown in Fig. 4. Fig. 4(a) and (b) shows the veranda and
second floor balconies from different angles. Note the staircase
connecting both floors in Fig. 4(c) and (d).

Villa Neos took on average 9 s to generate, of which less than
1% was spent on the semantic moderation between components.

3) Plan Execution: More than just showcasing the possibil-
ities of our approach to create different building types, the in-
teresting aspect of this example is the way the staircase is in-
tegrated across two different components. The staircase shaft
is determined by the shape grammar during the creation of the
coarse building shape (step 1). It is registered to the moderator as
a semantic object of class staircase. In steps 2 and 3 of the plan,
using an inquiry, the staircase is obtained and passed to first and
second floor plans as a room that is treated as fixed during the
layout process (see [30] for details). In this way, we ensure that
the staircase placement is congruent between two floors.

V. DISCUSSION

The examples presented in the previous section show the po-
tential of integrating existing procedural techniques as a method
for generating consistent buildings. These examples highlight
the central role of the semantic moderator within our frame-
work, coordinating and advising components towards the goal
of generating consistent buildings only. By correctly using the
generic interface of the moderator, procedural components can
obtain advice on the impact on building consistency of each of
the elements they propose to include. For this, all building el-
ements generated by different components are combined in the
central semantic building model, to ascertain that their location
and semantics do not conflict with each other. An example of
spatial consistency, taken from the results in Section IV, is that
the semantic moderator assures that the walls created by a floor
plan generator do not intersect the windows created by a facade
generator. Another example, but now of functional consistency,
is that both these same windows and the furniture (laid out by a
third procedural component) are all generated according to the
function of the room.

The examples in the previous section also show that, when
properly integrated, the individual procedural components
do not significantly divert from their standard behavior.
Components still execute their individual procedures, while
communicating results with the moderator helps them prevent

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 285

()

Fig. 4. Example of a Greek holiday two-story luxurious villa: (a) front view with veranda and pool; (b) back view with different types of windows depending on
adjacent rooms; (c) second floor with balconies, terrace, and staircase; (d) first floor with several rooms.

the building model from reaching an irreversible invalid state,
where required building elements are misplaced or excluded.
For instance, a fagade generator can use the selection and
marking mechanism to prevent the exclusion of an (initially
misplaced) front door.

In the previous sections, we outlined the implementation
extensions and alterations required for each component to
integrate with our framework. We consider these to have a
relative low burden on developers. Wrapping components
and writing a building plan, as done for our examples, are
reasonably straightforward implementation tasks. To give an
indication of the amount of effort required for integrating a new
component, the components featured in Section IV typically
took a single developer less than one working day to integrate.
The shape grammar component required slightly more effort,
as the calls to the semantic moderator had to be made available
in the CGA grammar as new shape operations, but still, it was
fully integrated within two days.

Building plans can be written in countless different ways,
e.g., by giving priority to fagade patterns (Aloha motel ex-
ample) or room layout (Meadowdale example). Allowing such
flexibility in the plan creation process enables designers to
benefit from the conflict-solving advantages of our framework,
while giving them the freedom to configure their plan in the
most adequate order for each building type. For example, an
office building plan could require rooms to be generated after
the building facade is finished, thereby ensuring a regular
exterior pattern, whereas for a residential villa one could rather
create a facade after the floor plan is completely determined.

Our semantic integration approach conveniently supports both
ways.

It should be remarked that the implementation effort required
to integrate multiple components is naturally dependent on the
coherence of the global choice of components. Classifying this
effort as straightforward reasonably assumes that the individual
procedural techniques were chosen to minimize conflicting sit-
uations. The framework by itself cannot totally assure that im-
plementation work will always be kept to a minimum. In other
words, if two procedural techniques do not naturally fit well to-
gether, you can hardly make them fit any better regardless of
the amount of integration work put in it. Consider the example
of a floor plan generation technique which creates rooms indi-
vidually and assembles them to form a new building shape. If
this unknown building shape needs to fit inside the building lot
shape, which could have been generated by another component,
many modifications might be necessary to assure that the re-
sults of those two components fit. Another complicating factor
might stem from differences in capabilities of components, for
instance, when integrating a furniture generator that only sup-
ports placement in rectangular rooms with a floor plan technique
that produces arbitrary room shapes.

Regarding performance, our results show 1) that it strongly
depends on each component, and 2) that it is hardly affected by
the moderator checks, conversions, and operations. In the exam-
ples shown, this overhead lies between 1% and 2% of the total
running time (less than 100 ms, in absolute time). This overhead
in computation time for the semantic moderator functionality
can therefore be considered as perfectly acceptable. Of course,

286 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

if we were to use very optimized procedural components, the
overhead would be relatively larger, but still minor when com-
pared to the computational cost of most individual procedural
methods.

In some specific instances, a plan or component input spec-
ification could lead to a building that cannot be completed in
a valid way, according to the semantic moderator. This entails
that an executing component cannot fulfil its current task and
report this issue back to the conductor, which presents the user
with an error message with a description where the building plan
failed. This situation can only be resolved by fixing either the
building plan or the problematic component input specification,
e.g., its shape grammar, room layout constraints, or the building
lot shape and dimensions.

Currently, the major limitation in this approach relates to our
somewhat naive implementation of the mechanism for com-
bining elements’ geometry. As stated in Section III, individual
components are responsible for assuring that their generated ge-
ometry is converted to the common coordinate system and unit
of scale. Although its impact on performance is minimal, this
does require an additional implementation effort for each com-
ponent that is to be integrated. A better alternative would be to
automate these steps within the framework itself. In this line,
a geometry moderator able to automatically and consistently
transform building elements would be a valuable contribution
to further smoothen the integration process.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel approach for automati-
cally generating consistent virtual buildings, i.e., buildings con-
sisting of a variety of plausible architectonic elements, all in
harmony with each other. Among other uses, such “enter-any-
where” buildings are especially suitable for open game worlds
and exploration-based gameplay.

This approach provides a semantic framework for integrating
different components that implement existing procedural tech-
niques, each of them generating specific building elements.
Examples of these components are procedural generators for
facades, floor plans, lot shapes, furniture, or textures. In our
approach, a semantic moderator communicates with these pro-
cedural components, and provides them with valuable guidance
in order to prevent conflicts among the generated building
elements. In this way, we are able to preserve the individual
qualities of the integrated components. The moderator keeps a
semantic building model that represents each building element
generated by the procedural components. Based on this model
and on a number of constraints, it maintains the consistency of
generated buildings.

We showed the applicability of our approach with examples
from our prototype system, featuring the integration of a facade
shape grammar, two different floor plan layout generation tech-
niques, and furniture placement techniques. This integration re-
quired small modifications, which were straightforward to im-
plement, and did not affect the performance of the procedural
components.

This integration approach has valuable advantages over ded-
icated approaches. These include the ease of integrating new
components and putting them into existing plans. This makes it

possible to use the best technique for each building element, for
each specific building type. Examples of building elements for
which we could integrate such dedicated techniques are under-
ground structures and layouts of gardens. Also, we argue that
this approach brings both power and flexibility to the building
generation process. Plans for generating different types of build-
ings can easily be elaborated, once the required procedural com-
ponents have been integrated in the framework. Subsequently,
the framework is able to execute them, invoking the available
components in any desired combination. Furthermore, this ap-
proach allows one to focus on improving individual compo-
nents, without being concerned with how these internal changes
affect the consistency of the final outcome.

For future improvements, we envision some options for ex-
tending the generic interface of our semantic moderator. An ex-
ample of such an extension is the management of architectural
styles between components, i.e., between interiors and exteriors
(e.g., matching colors, patterns). Currently, these styles are part
of each procedural component. The designer who is overseeing
the integration process is responsible for selecting components
with compatible styles. A clear improvement over this would be
to introduce a style moderation mechanism that is aware of dif-
ferent architectural styles, including how they can be applied to
the different procedural components. Separating style and struc-
ture generation would necessarily require more communication
and new constraints in our framework. A new mechanism, either
a new moderator or an extension to the current one, would need
functionality to coordinate: 1) building structure-only genera-
tion, 2) creation of style appropriate to fit all the structure (i.e.,
all individual components), and 3) application of style to all the
structure, in a consistent fashion. Such a clear separation of style
and structure would definitely be a valuable contribution to pro-
cedural generation of buildings.

It would also be interesting to investigate whether this ap-
proach can be applied to other areas of procedural generation
of virtual worlds. A first example could be the generation of
an urban environment. In this setting, the semantic moderator
could be used to avoid typical conflicts occurring between a new
building and the urban environment. For instance, using an ex-
tended version of the semantic moderator, one could avoid gen-
erating windows that look out directly on a wall of a neighboring
building. Another example is the placement of light posts on the
pavement, where one would want to avoid blocking building
doorways and ground floor windows, as far as possible. The se-
mantic moderator would need new functionality, similar to the
current one, to share new types of information. The semantic li-
brary [33] used by the moderator already conveys attributes for
these concepts and properties, therefore this type of extensions
are within reach. However, for our framework to become a more
generic integration platform, other challenges would need to
be addressed, e.g., supporting automatic geometry combination,
consistency checking for additional aspects like playability, and
more detailed planning methods.

We are especially interested in using the proposed integration
approach in other contexts of virtual worlds. We aim to include
our approach in SketchaWorld [37], a virtual world modeling
framework that uses a declarative approach to procedural gen-
eration of virtual worlds. We also plan to populate buildings

TUTENEL et al.: GENERATING CONSISTENT BUILDINGS: A SEMANTIC APPROACH FOR INTEGRATING PROCEDURAL TECHNIQUES 287

with objects enriched with semantic services [35]. These ser-
vices allow for a more complete and nonscripted way for players
to interact with virtual objects. Applied to these new contexts,
not only buildings, but also procedurally generated virtual cities
would encourage players to explore rich open worlds. In these
new worlds, players could interact with their environment with
fewer limitations, in a more natural and meaningful way.

In short, our semantic approach allows one to integrate ex-
isting procedural techniques, while preserving their individual
qualities, thus allowing for the automatic generation of very de-
tailed and consistent buildings.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. They would also like to thank F.
Marson for kindly providing the source code of his floor plan
procedural generator and for assisting them in its integration
process. Finally, the authors would like to thank M. Schaap for
his assistance in rendering most examples.

REFERENCES

[1] R. M. Smelik, K. J. de Kraker, T. Tutenel, R. Bidarra, and S. A. Groe-
newegen, “A survey of procedural methods for terrain modelling,” in
Proc. CASA Workshop 3D Adv. Media Gaming Simul., Amsterdam,
The Netherlands, Jun. 2009, pp. 25-34.

[2] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated res-
idential building layouts,” ACM Trans. Graph., vol. 29, no. 5, pp.
181:1-181:12, 2010.

[3] R. Bidarra and W. Bronsvoort, “Semantic feature modelling,”
Comput.-Aided Design, vol. 32, no. 3, pp. 201-225, 2000.

[4] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de Kraker, “The role of
semantics in games and simulations,” ACM Comput. Entertain., vol. 6,
pp. 1-35, 2008.

[5] E. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and ren-
dering of eroded fractal terrains,” in Proc. 16th Annu. Conf. Comput.
Graph. Interactive Tech., 1989, pp. 41-50.

[6] D. S. Ebert, S. Worley, F. K. Musgrave, D. Peachey, and K. Perlin,
Texturing & Modeling, A Procedural Approach, 3rd ed. New York:
Elsevier, 2003.

[7]1 Y. I. H. Parish and P. Miiller, “Procedural modeling of cities,” in
Proc. 28th Annu. Conf. Comput. Graph. Interactive Tech., 2001, pp.
301-308.

[8] G. Kelly and H. McCabe, “Citygen: An interactive system for proce-
dural city generation,” in Proc. 5th Annu. Int. Conf. Comput. Game
Design Technol., Liverpool, U.K., Nov. 2007, pp. 8-16.

[9] B. Watson, P. Miiller, O. Veryovka, A. Fuller, P. Wonka, and C. Sexton,
“Procedural urban modeling in practice,” I[EEE Comput. Graph. Appl.,
vol. 28, no. 3, pp. 18-26, 2008.

[10] B. Weber, P. Miiller, P. Wonka, and M. Gross, “Interactive geometric
simulation of 4D cities,” Comput. Graph. Forum, Proc. Eurograph.,
vol. 28, pp. 481-492, Apr. 2009.

[11] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant archi-
tecture,” in Proc. 30th Annu. Conf. Comput. Graph. Interactive Tech.,
2003, pp. 669-677.

[12] A. F. Coelho, A. A. de Sousa, and F. N. Ferreira, “Modelling urban
scenes for LBMS,” in Proc. 10th Int. Conf. 3D Web Technol., 2005,
pp. 37-46.

[13] P.Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool, “Procedural
modeling of buildings,” in Proc. 33rd Annu. Conf. Comput. Graph.
Interactive Tech., 2006, pp. 614-623.

[14] H. Koning and J. Eizenberg, “The language of the prairie: Frank Lloyd
Wright’s prairie houses,” Environ. Planning B, Planning Design, vol.
8, no. 3, pp. 295-323, 1981.

[15] G. Cagdas, “A shape grammar model for designing row-houses,” De-
sign Studies, vol. 17, no. 1, pp. 35-51, 1996.

[16] D. Y. Kwon, “ArchiDNA: A generative system for shape configura-
tions,” M..S. thesis, Dept. Architecture, Univ. Washington, Seattle, WA,
2003.

[17] L. Yong, X. Congfu, P. Zhigeng, and P. Yunhe, “Semantic modeling
project: Building vernacular house of southeast china,” in Proc. ACM
SIGGRAPH Int. Conf. Virtual Reality Continuum Appl. Ind., 2004, pp.
412-418.

[18] Procedural, Inc., CityEngine, [Online]. Available: http://www.proce-
dural.com

[19] Epic Games, Unreal Engine 3, [Online]. Available: http://www.unre-
altechnology.com

[20] “James Golding—Epic Games,” in Building Blocks Artist Driven Pro-
cedural Buildings—Game Developers Conf.,2010 [Online]. Available:
http://gdcvault.com/play/1012655/building-blocks-artist-driven-pro-
cedur

[21] P. Miiller, G. Zeng, P. Wonka, and L. V. Gool, “Image-based proce-
dural modeling of facades,” in Proc. 34th Annu. Conf. Comput. Graph.
Interactive Tech., 2007, vol. 26, pp. 85:1-85:10.

[22] X.Chen,S. B. Kang, Y.-Q. Xu, J. Dorsey, and H.-Y. Shum, “Sketching
reality: Realistic interpretation of architectural designs,” ACM Trans.
Graph., vol. 27, pp. 11:1-11:15, May 2008.

[23] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural
generation of "Pseudo infinite’ cities,” in Proc. Ist Int. Conf. Comput.
Graph. Interactive Tech. Australasia South East Asia, 2003, pp. 87-94.

[24] D. Finkenzeller, “Detailed building fagades,” IEEE Comput. Graph.
Appl., vol. 28, no. 3, pp. 58—66, 2008.

[25] D. Finkenzeller and J. Bender, “Semantic representation of complex
building structures,” in Proc. Comput. Graph. Visualiz./IADIS Multi
Conf. Comput. Sci. Inf. Syst., Amsterdam, The Netherlands, Jul. 2008,
pp- 259-264.

[26] A. Rau-Chaplin, B. Mackay-Lyons, and P. Spierenburg, “The Lahave
house project: Towards an automated architectural design service,”
in Proc. Int. Conf. Comput.-Aided Design, Hagenberg, Austria, Sep.
1996, pp. 25-31.

[27] E.Hahn, P. Bose, and A. Whitehead, “Persistent realtime building inte-
rior generation,” in Proc. ACM SIGGRAPH Symp. Videogames, 2006,
pp. 179-186.

[28] F.Marson and S. R. Musse, “Automatic generation of floor plans based
on squarified treemaps algorithm,” Int. J. Comput. Games Technol.,
vol. 2010, pp. 1-10, Jan. 2010.

[29] J. Martin, “Procedural house generation: A Method for dynamically
generating floor plans,” presented at the SIGGRAPH Symp. Interactive
3D Graph. Games, Redwood City, CA, Mar. 14-17, 2006.

[30] R. Lopes, T. Tutenel, R. M. Smelik, K. J. de Kraker, and R. Bidarra,
“A constrained growth method for procedural floor plan generation,”
in Proc. 11th Int. Conf. Intell. Games Simul., 2010, pp. 13-20.

[31] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de Kraker, “Rule-based
layout solving and its application to procedural interior generation,”
in Proc. CASA Workshop 3D Adv. Media Gaming Simul., Amsterdam,
The Netherlands, Jun. 2009, pp. 15-24.

[32] P. Charman, “Solving space planning problems using constraint tech-
nology,” Tallinn, Estonia, NATO ASI Constraint Programming: Stu-
dents’ Presentations, TR CS 57/93, Inst. Cybern., Estonian Acad. Sci.,
1993, pp. 80-96.

[33] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de Kraker, “Using se-
mantics to improve the design of game worlds,” in Proc. 5th Conf.
Artif. Intell. Interactive Digit. Entertain., Stanford, CA, Oct. 2009, pp.
100-105.

[34] G. A. Miller, “Wordnet: A lexical database for English,” Commun.
ACM, vol. 38, pp. 39-41, 1995.

[35] J. Kessing, T. Tutenel, and R. Bidarra, “Services in game worlds: A
Semantic approach to improve object interaction,” in Proc. Int. Conf.
Entertain. Comput., 2009, pp. 276-281.

[36] T. Tutenel, B. Bollen, R. v. de Linden, M. Kraus, and R. Bidarra, “Pro-
cedural filters for customization of virtual worlds,” in Proc. Workshop
Procedural Content Generat. Games, 2011, DOI: 10.1145/2000919.
2000924.

[37] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “A declar-
ative approach to procedural modeling of virtual worlds,” Comput.
Graph., vol. 35, no. 2, pp. 352-363, Apr. 2011.

Tim Tutenel graduated in computer science from
Hasselt University, Hasselt, Belgium, in 2006.
Currently, he is working towards the Ph.D. degree on
the subject of semantics in games at Delft University
of Technology, Delft, The Netherlands.

He is currently working on a research project on
automatic creation of virtual worlds. His research
focus is on layout solving, object semantics, and
object interactions.

288

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Ruben M. Smelik graduated in computer science
from the University of Twente, Twente, The Nether-
lands, in 2006. Currently, he is working towards
the Ph.D. degree at the Modelling, Simulation and
Gaming Department, Netherlands Organization for
Applied Scientific Research (TNO), The Hague, The
Netherlands.

He is a scientist at TNO. He is currently working
on a research project on automatic creation of virtual
worlds. His research focus is on methods and tech-
niques for creating geotypical virtual worlds for se-

rious games and simulations.

techniques.

Ricardo Lopes received the B.Sc. and M.Sc. degrees
in information systems and computer engineering
from the Technical University of Lisbon, Lisbon,
Portugal, in 2007 and 2009, respectively. He is
currently working towards the Ph.D. degree at Delft
University of Technology, Delft, The Netherlands.
His Ph.D. research subject is the “Generation of
adaptive game worlds.”

His current research interests include adaptivity in
games, player modeling, interpretation mechanisms
for in-game data, and (online) procedural generation

Klaas Jan de Kraker received the Ph.D. degree
in computer science from Delft University of Tech-
nology, Delft, The Netherlands, in 1998.

He is a member of the scientific staff at The
Netherlands Organization for Applied Scientific
Research (TNO), The Hague, The Netherlands,
where he is leading various simulation projects in
the areas of simulation-based performance assess-
ment, collective mission simulation, multifunctional
simulation, and serious gaming.

Rafael Bidarra graduated in electronics engineering
from the University of Coimbra, Coimbra, Portugal,
in 1987 and received the Ph.D. degree in computer
science from Delft University of Technology, Delft,
The Netherlands, in 1999.

He is currently an Associate Professor of Game
Technology at the Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft Univer-
sity of Technology. He leads the research line on
game technology at the Computer Graphics Group.
His current research interests include: procedural
and semantic modeling techniques for the specification and generation of both
virtual worlds and gameplay; serious gaming; semantics of navigation; game
adaptivity and interpretation mechanisms for in-game data. He has published
many papers in international journals, books, and conference proceedings.

He integrates the editorial board of several journals, and has served in many
conference program committees.

