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Abstract: Semantics of 3D models is playing a crucial role in games and simulations. In this paper we propose a 

framework to specify semantics of large sets of 3D models with minimal human involvement. The 

framework consists of three modules: classification, segmentation and annotation. We associate a few 

models with tags representing their classes and classify the other models automatically. Once all models 

have been classified in different groups, we take a certain number of models as template models in each 

group, and segment these template models interactively. We then use the segmentation method (and 

parameters) of the template models to segment the rest of the models of the same group automatically. We 

annotate the interactively segmented parts and use an attributed adjacency graph to represent them. 

Automatic annotation of the rest of the models is then performed by subgraph matching. Experiments show 

that the proposed framework can effectively specify semantics of large sets of 3D models. 

1. INTRODUCTION 

With rapid advancements in modeling techniques 

and graphics hardware, very complex and visually 

convincing 3D models become more important in 

virtual worlds. In recent years, quite some research 

has been done on semantics of models, to make 

them behave more as in real-life. Semantics of 

models is all information about the model, in 

addition to its geometry (Bronsvoort et al., 2010). 

This can include various parameters, e.g. for 

physical properties, roles, behavior and services they 

provide. Semantic information of models can be 

useful in many applications: 1) by using semantic 

models when generating virtual worlds 

automatically, the output can be improved (for 

example, information about placement relationships 

can create more realistic layouts (Tutenel et al., 

2009)); 2) detailed and extensive information about 

object interaction, and services provided by objects, 

can lead to more immersive and compelling 

gameplay experiences (Kessing et al., 2009); and 3) 

behavioral information can be used to maintain 

semantic consistency in adaptive environments. 

More on the role semantics can play in virtual 

worlds can be found in (Tutenel et al., 2008).  
However, specifying semantics of 3D models is 

often a laborious and repetitive task. It is therefore 
important to find techniques to assist a user in this 
task. Semantics of 3D models can generally be 
divided into two categories: global semantics and 
local semantics. Global semantics describes general 
information about 3D models, including their names, 
materials, volumes and relationships with other 
models. Local semantics describes information on 
the individual parts of which the model is composed, 
and relationships among these parts. To our 
knowledge, most current methods specify semantics 
of 3D models manually or semi-automatically, and 
usually the semi-automatic methods still require a 
great deal of user interaction. Our method tries to 
reduce the amount of interaction. For specifying 
global semantics, some methods propose to classify 
the 3D models and use the semantics of already 
classified models to annotate the unknown ones if 
they are in same group. However, due to the 
mismatch between the high-level human intention 
and the low-level geometric data representation, 
usually called the “semantic gap” (Smeulder et al., 
2000), the results of automatic classification are not 



 

convincing. For specifying local semantics, we need 
to segment 3D models into meaningful parts and 
annotate each part. The problem of segmentation of 
3D models is still a challenge, because current 
methods cannot automatically separate models into 
meaningful parts without context.  

In this paper, we propose a method for 
specifying global and local semantics of 3D models 
with minimal human intervention. We manually 
annotate a few models with tags (global semantics) 
as training models. We classify the rest of the 
models based on these training models and associate 
them with the tag of the training models in the same 
class. After all the models have been classified, we 
choose a few models as template models from each 
class. The template models are segmented and the 
model parts are annotated with tags (local semantics) 
interactively. The segmentation method (and 
parameters) of template models can be used to 
partition the models with the same tag. Once the 
models have been separated into parts, we rely on 
Attributed Adjacency Graph (AAG) to represent the 
model parts. The AAG representing the parts of a 
template model contains local semantics. Therefore, 
specifying the local semantics of partitioned models 
can be accomplished by subgraph isomorphism. The 
main contributions of this paper include: 1) A 
framework for specifying semantics of 3D models 
with limited human involvement; 2) The use of 
subgraph isomorphism for annotation of model 
parts. 

The remainder of this paper is organized as 
follows. In Section 2, we introduce the related work 
on specifying semantics of 3D models. The outline 
of our method is described in Section 3. Specifying 
local semantics of 3D models is described in Section 
4. Our prototype system is presented in Section 5, 
and we show results and give conclusions in 
Sections 6 and 7. 

2. RELATED WORK 

In order to classify 3D models, we need to define a 

shape descriptor first, which is used to compute the 

similarity between 3D models. In the past decade, 

many shape descriptors have been proposed in the 

scope of shape-based 3D model retrieval. Some 

shape descriptors rely on geometry to compare 3D 

models, such as Shape distribution (Osada et al., 

2002), Spherical harmonic (Saupe and Vranic, 2001) 

and 3D Zernike (Novotni and Klein, 2004)). Reeb 

graph (Biasotti et al., 2008) is based on topology. A 

more general overview of shape descriptor can be 

found in the survey (Tangelder and Veltkamp, 

2004). Despite of years of research, the retrieval 

performances of above-mentioned methods are very 

limited. Once the shape descriptor for computing the 

similarity between models has been determined, we 

can resort to several methods to classify the models, 

such K-NN (Han and Karypis, 2000), SVM 

(Novotni et al., 2005), and neural networks 

(Carpenter  and Hoffman, 1997). 
All approaches described above use geometry or 

topology to compute the similarity between 3D 
models. Actually, some models are similar in shape, 
but they are not similar at all when looking at their 
meaning, because of the semantic gap. For example, 
in Fig. 1, the models “Bottle” and “Balloon vehicle” 
are similar in shape, but they are quite different 
objects. Relevance feedback is often used to bridge 
the semantic gap. The most important part of 
relevance feedback is the learning algorithm. Some 
approaches (Rocchio, 1971) modify query vectors or 
change the weight of elements of the vector to make 
it move towards positive and away from negative 
examples. Other methods (Giacinto and Roli, 2004) 
use a Bayesian framework to estimate the posteriori 
probability after each iteration. Recently, several 
kinds of SVM (Novotni et al., 2005) with different 
kernels have been successfully utilized in 
classification and relevance feedback due to its 
efficiency and precision. 

Fig. 1. 3D model “Bottle” and “Balloon vehicle” 

 
The two main tasks in specifying local semantics 

of model parts are segmentation and annotation. 
Many methods employing geometric criteria for 
model segmentation were proposed in the last 
decade, including Region growing (Pavlidis and 
Liow, 1990), Fitting primitives (Attene et al., 2006), 
Random walks (Lai et al., 2008), Random cuts 
(Golovinskiy and Funkhouser, 2008), Reeb graph 
(Biasotti et al., 2008)) and Shape diameter (Shapira 
et al., 2008). A recent survey can be found in (Chen 
et al., 2009). These methods make use of curvature, 
normal direction, geodesic distance or volume for 
segmentation. However, approaches using pure 
geometric attributes hardly produce meaningful 
model parts for annotation (Attene et al., 2009). 
Therefore, such methods usually need manually 
tuned parameters to get satisfactory and consistent 
results. Once 3D models have been segmented, some 

Bottle Balloon vehicle



 

methods (Attene et al., 2009 and Robbiano et al., 
2007), use well-defined tag dictionaries to annotate 
model parts manually. The papers about these 
methods also point out that automatic annotation of 
model parts could be done by exploiting topologic 
and geometric properties of parts, but they do not 
give a concrete way for such automatic annotation. 

Recently, a few approaches combined 3D model 
segmentation and labeling with recognition of model 
shape; they are inspired by image segmentation in 
computer vision (Tu et al., 2005, and Schnitman et 
al., 2006). One such method (Golovingskiy and 
Funkhouser, 2009) simultaneously segments 3D 
models by matching points among a set of models. 
This method can segment 3D models in a class 
consistently, and transfer labels based on matches. 
However, the method needs all 3D models to be 
classified first, and it is not suitable for large sets of 
3D models: it needs to consider each pair of models 
for correspondences. Another method (Kalogerakis 
et al., 2010) learns a large variety of geometric and 
contextual label features from a collection of labeled 
training models, and uses these label features to 
segment models and label model parts automatically. 
This method achieved a significant improvement 
compared with current segmentation methods. 
However, it requires consistently labeled models for 
training, and the performance typically drops with 
fewer training models, because it combines multiple 
geometric attributes and needs to determine which 
attributes are distinguished for certain types of 
models in the learning process. Our method to 
specify semantics of 3D models also combines 
segmentation with recognition. Compared with 
method (Kalogerakis et al., 2010), our method needs 
much less training models because we rely on 
subgraph matching to annotate model parts. Another 
advantage of our method is that the framework can 
easily incorporate other, better segmentation 
methods, and thus improve the results of 
specification of semantics. 

3. FRAMEWORK OF THE 

PROPOSED METHOD 

First, we refer to 3D models without any semantics 
as untagged models. Once models have been 
classified into a particular class we call them tagged 
models, after the segmentation we call them 
partitioned models, and once their parts have been 
annotated we call them specified models. The 
specified models will be further used as tagged 
models and improve the classification by relevance 
feedback. Every relevance feedback step is an 
iteration of the classification. This leads to three 
major steps in the method: classification, 
segmentation and annotation. 

The workflow of the system is illustrated in 
Fig. 2. It also shows the breakup between the 
automatic phase and the interactive phase: for each 
step, the user needs to interactively create some 
training data that will be used in the automatic 
phase. For example, the user can classify one table 
model, after which the method will classify all other 
table models in the same class, possibly aided by the 
relevance feedback. This will be further explained in 
the next subsections. 

3.1 Model classification step 

In this section, we use the most popular method SH 
(Saupe and Vranic, 2011) to compute the similarity 
between models and SVM to classify the 3D models 
due to its robustness and simplicity. In order to use 
SVM to classify the models, we need to choose 
appropriate training models. Training models have a 
large impact on the classification result. Less 
training models would result in a bad classification 
result. However, too many training models need lots 
of tedious work and are not suitable for large sets of 

Fig. 2. The framework of our method for specifying semantics of 3D models 
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3D models. The best training models should spread 
over all the ranges of 3D models.  

Therefore, we rely on the k-means method to 
cluster all the 3D models and choose several models 
from each class. We assign tags from the semantic 
library (Tutenel et al., 2009) to these models 
manually, and use these tagged models as training 
models. Then, we classify all the remaining 
untagged models based on the training models and 
associate these untagged models with the tag of the 
tagged models in the same class. In the end, the 
untagged models are specified. The specified models 
are further used to improve the classification. 

3.2 Model segmentation step 

Since 3D model segmentation is out of the scope of 
this paper, we rely on the currently mature methods 
for model segmentation. 3D models can be generally 
divided into two categories: man-made models, 
having obvious boundaries, and freeform models. 
Man-made models are much easier segmented 
compared with freeform ones. For example, we 
could simply use Region growing (Pavlidis and 
Liow, 1990) to segment a man-made model into 
several different parts automatically. However, this 
method fails to work on freeform models. We have 
to use other, more sophisticated methods, such as 
SDF (Shapira et al., 2008), to cope with such 
freeform models. This method usually provides 
users with an interactive way of manipulating 
parameters to get a correct segmentation result. 

We argue that, with the global semantics 
associated to 3D models, we can reduce the users‟ 
interaction for segmentation since models with the 
same tag may have the same segmentation method 
and even have similar parameters of the same 
method. For each group of models with the same 
tag, we choose only a few template models and 
segment them interactively. We use the 
segmentation method (and parameters) of the 
template models to partition the rest of the models in 
the same group automatically. 

Choosing the training models wisely is 
obviously an important factor towards good 
specification results. When there are a number of 
different model shapes in the same class, the training 
models should all be models of the same shape, but 
instead reflect the variability of the shapes. A simple 
example might be the table class. A set of models 
might contain a number of round tables and a 
number of rectangular tables. For the best result, 
both round and rectangular tables need to be chosen 
as training models to guarantee optimal results. 

Choosing the training models wisely is 
obviously an important factor towards good 

specification results. If there are a number of 
different model shapes in the same class, the training 
models should reflect the variability of the shapes. A 
simple example might be the table class. A set of 
models might contain a number of round tables and 
a number of rectangular tables. For the best result, 
both round and rectangular tables need to be chosen 
as training models. 

3.3 Model annotation step 

Once a template model has been segmented, we 
annotate some model parts based on the tags from 
the semantic library (Tutenel et al., 2009). An AAG 
is defined to represent the annotated model parts, 
where each node denotes a model part and an edge 
keeps the relationships between two model parts. 
The automatically partitioned models are also 
represented by AAGs. We refer to the AAGs 
constructed from the template models as sub-AAGs 
because not all the parts of the template model are 
annotated. Therefore, the automatic annotation can 
be accomplished by subgraph matching, finding a 
mapping between a sub-AAG and an AAG. The 
details of this part are further described in the next 
section. 

Fig. 3. Segmentation results (a) segmentation of 
man-made models (b) segmentation of freeform 
models (c) different parameters of segmentation for 
a freeform model 

4. SPECIFICATION OF LOCAL 

SEMANTICS 

Specification of semantics for the model parts is 
composed of a segmentation step and an annotation 
step. Due to the fact that there is no single 

(a)

(b)

(c)



 

segmentation method suitable for all 3D models, we 
use multiple methods for segmentation. After the 
tagged models have been segmented, we resort to 
AAGs to represent the partitioned models, and use 
subgraph matching to annotate model parts 
automatically. 

4.1 Multiple segmentation 

methods 

Model segmentation is a difficult field in computer 
graphics. To our knowledge, there is no one method 
that fits all types of 3D models. Therefore, we rely 
on two mature methods for segmentation in our 
system, since the segmentation of man-made models 
and freeform models are quite different. For 
example, some man-made models (Fig. 3 (a)), can 
be automatically segmented into different model 
parts by Region growing (Pavlidis and Liow, 1990). 
However, this method fails to work on freeform 
models (Fig. 3 (b)). We have to make use of SDF 
(Shapira et al., 2008) to segment these freeform 
models. Even with the SDF method, a 3D model can 
be partitioned quite differently with different 
parameters (Fig. 3 (c)). Therefore, we need to 
determine the appropriate segmentation method and 
parameters from the training models interactively, 
and use this method and these parameters for 
segmenting other models in the same class. 

4.2 AAG construction 

After all the models have been segmented, we use 
AAGs to represent the partitioned models. Suppose 
a partitioned 3D model is               . It 
can be represented by an AAG       , where each 
segmented part    is denoted as a node     ; the 
graph edge            exists whenever the two 
parts         are adjacent. The node    keeps the 
geometric attributes of part    , such as its volume, 
surface area, main axis and number of adjacent 
parts. The edge           keeps the relationships 
between parts    and   , such as distance and 
relative position (parallel or perpendicular). Two 
partitioned 3D models and their related AAGs are 
shown in Fig. 4. 

In our system, we compute the geometric 
attributes and relationships of the bounding box of a 
part, rather than of the part itself, because of 
efficiency and robustness. It is much faster to 
compute the volumes and adjacency relationships of 
bounding boxes than of the actual model parts. Most 
algorithms for calculating the volume also fail to 
cope with models with holes. In our experiments, 
using the bounding box instead of the part itself 

proved sufficient, despite the slightly decreased 
precision. 

The geometric attributes and relationships kept 
in nodes and edges of an AAG are critical for 
subgraph matching. Therefore, we need to consider 
the attributes and relationships which are invariant 
when the models are scaled, translated or rotated, 
and even when some pose changes, such as a human 
model in standing and walking poses. Volume is an 
important attribute. A node with a large volume is 
unlikely to match a node with a small volume. 
However, the volume of a model part is not scale 
invariant, and thus it needs to be normalized before 
using. Adjacency relationships of model parts are 
also very important for matching. In our 
experiments, we consider three cases: disconnection, 
connection and containment. If the bounding boxes 
of two model parts do not intersect, the adjacent 
relationship is disconnection. If the bounding boxes 
intersect but do not contain each other, the 
relationship is connection; otherwise, the 
relationship is containment. Parallel or perpendicular 
structures of models also help the procedure of 
subgraph matching. We need to keep these 
relationships in the AAG. 

Fig. 4. Segmented models are represented by AAG 
 

4.3 Subgraph matching 

We annotate the parts of template models 
interactively, and keep the annotation in the nodes of 
their sub-AAGs. Therefore, the automatic annotation 
of the rest of the models could be done by subgraph 
matching, which finds a one-to-one mapping 
between nodes of a sub-AAG and an AAG.  

Subgraph matching is an NP-complete problem. 
The time requirements of brute force matching 
algorithms increase exponentially with the size of 
the input graphs. There are several available 
algorithms, such as Ullmann‟s method (Ullmann, 
1976), SD (Schmidt and Druffel, 1976), and VF 
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(Cordella et al., 2001). Ullmann proposed a depth-
first search-based algorithm with refinement 
procedures, which is now the most popular and 
frequently used algorithm for subgraph 
isomorphism. Our system also makes use of 
Ullmann‟s method for AAG subgraph matching and 
automatic annotation. For example, in Fig. 5, if there 
is a correspondence between a sub-AAG and an 
AAG, we will annotate the related nodes of the 
AAG as a sub-AAG.  

Fig. 5. Subgraph matching 
 

In the refinement procedures of Ullmann‟s 
method, the core part is to determine whether a node 
    of the sub-AAG corresponds to a node   

  of the 
AAG. Suppose we have found a mapping between 
                  from the sub-AAG and  
      

    
        

   from the AAG, i.e., these are 
isomorphic, then we need to determine whether the 
next node     corresponds to   

   or not. We use 
several criteria to judge this, e.g., we consider the 
geometric attributes of nodes and relationships 
between them. The pseudo code is in Algorithm 1: 
 
Algorithm 1. Verify the paired nodes  
Bool VerifyNextNodes(           

 ) 
//Initialization 
                 ,       

    
        

   
for each         

                
//Begin to match 
if the adjacency relationship of    and    is not equal 
to that of   

  and   
  

return false 
if the volume ratio of    and    is not close to the 
volume ratio of   

  and   
  

return false 
if   is parallel (perpendicular) to    
if   

  is not parallel(perpendicular) to   
  

return false 
//Otherwise 
return true 

 
To further optimize the above algorithm, we take 

advantage of prior knowledge to reduce the search 
space. The details of this are described in Section 
5.4. Meanwhile, the number of model parts is never 

really large: less than 20 in most of our experiments, 
and never more than 100 in practice. Therefore, the 
execution time of the algorithm remains acceptable 
although the subgraph matching algorithm is an NP-
complete problem. 

5. PROTOTYPE SYSTEM 

We will now describe the workflow of our 
implemented prototype system. We will discuss 
where and how the user needs to intervene in the 
process, and how the automatic steps (classification, 
segmentation and annotation) work. 

5.1 User interaction 

User interaction serves two tasks: specify global 
semantics and local semantics of a few models 
interactively. For specifying global semantics, we 
need to specify the number of clusters and choose 
the training models for SVM classification. Once all 
3D models have been classified, we choose a few 
template models from each class and specify their 
local semantics, including interactive segmentation 
and annotation. 

We use a semantic library (Tutenel et al., 2009) 
to annotate models and model parts. The aim of the 
semantic library is to provide a set of semantic 
classes for each 3D model. A semantic class 
describes detailed information about 3D models 
associated to that class, ranging from class names 
and physical properties, to relationships with other 
classes (and therefore their associated models). For 
example, in Fig. 6, the class “Table” consists of five 
parts (4 instances of the “Table leg” class and 1 of 
the “Table top” class) and inherits from the parent 
class “Furniture”. 

Fig. 6. Specification of semantics of 3D models 
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5.2 Automatic classification 

We use SVM for classification due to its robustness 
and simplicity. The RBF kernel function is usually 
the first choice for SVM. This kernel function can 
handle nonlinear problems by increasing the 
dimensionality of space. However, in this work, we 
use a linear kernel instead of RBF because the 
dimensionality of the shape descriptor is large 
(1024)  (Hsu et al., 2003). In the example of Fig. 7, 
the model with the red box is the training model, 
which is accomplished as described in Section 5.1. 
The rest of the models in Fig.7 are considered to be 
similar to the training model by SVM. The 
classification results are almost consistent with 
human perception, except the last model, the 
“Table” model, which is wrongly classified into the 
group. 

Fig. 7. Automatic Classification using training data 
 

Fig. 8. The classification result after one iteration 
 
Only a part of similar models are classified into a 

group by SVM with the limited training models 
because we expect to reduce user interaction. Some 
models, which belong to different classes, also end 
up in the same group due to the semantic gap. The 
relevance feedback can be used to improve the 

classification result. The specified models in the end 
are used as reference models to refine the 
classification hyperplane of SVM. For example, in 
Fig. 7, the models in the green box are specified 
models. Fig. 8 shows the classification results after 
using the new training models. The results improved 
quite a lot compared with Fig. 7. 

5.3 Automatic segmentation 

Once all the tagged models have been classified, we 
rely on template models segmented interactively in 
Section 5.1 to partition the other tagged models 
automatically. For each class of tagged models, we 
use the same segmentation method (and parameters) 
of template models for segmentation. For example, 
in Fig. 9 (a), the template model is segmented by 
region growing (Pavlidis and Liow, 1990) and the 
rest of the models as well. In Fig. 9 (b), the template 
model is segmented by SDF (Shapira et al., 2008). 
We need to further consider the value of parameters 
of the SDF method. We use the average value of 
parameters in the experiments if there are multiple 
template models in the class. However, the SDF 
method with the same parameters cannot guarantee 
consistent segmentation even when the tagged 
model is quite similar to the template model. 

Fig. 9. Automatic model segmentation based on 
template models 

5.4 Automatic annotation 

The partitioned models are represented by an AAG, 
and subgraph matching is used for automatic 
annotation. Before subgraph matching, the nodes of 
each AAG need to be sorted according to the 
volume. It is appropriate to assume that nodes with a 
large volume are more meaningful than the ones 
with a small volume. Therefore, we will first search 
the nodes with large volume in the procedure of 
subgraph matching, which reduces the time 
complexity and ambiguity if there are multiple 
mappings between a sub-AAG and an AAG. 

template

template
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6. RESULTS 

We used 3D models from the PSB (Shilane et 
al., 2004) to validate the framework proposed in this 
paper. The database of PSB is classified with 4 
resolutions, ranging from coarse level to detailed 
level. The more detailed the level is, the more 
categories, and the fewer models are contained in 
each category. Since our framework is aimed at 
specifying semantics of large sets of models, we 
prefer to have sufficient models in each class. 
Therefore, we chose “coarse1” level (1814 models 
are divided into 38 categories) in our experiments.  

 
We used global specification rate         , local 

specification rate         and average specification 
rate       as indicators for the performance of our 
prototype system. These indicators are defined as 
follows: 

         
 

 
, 

         
 

 
, 

                       
 

 
 

 
where m is the number of models in a given 

category in PSB, c is the number of models 
automatically classified by SVM, and n is the 
number of automatically specified models. The 
global specification rate indicates the automatically 
classified models in the database, the local 

specification rate indicates the automatically 
specified models which are relative to classified 
models, and the average specification rate indicates 
the automatically specified models which are 
relative to models in the database.  

Fig. 10. Average specification rate with increasing 
number of template models and iterations 
 

We set the number of categories to be 38 for 
clustering and chose 4 tagged models of each 
category as training models for SVM classification. 
Once all the models of the PSB were classified, we 
segmented and annotated 3 models of each class 
interactively, and used these specified models as 
template models for automatic segmentation and 
annotation. Table 1 illustrates the results of 5 major 
categories in the PSB with three iterations. Once the 
3D models have been classified by SVM, more than 
80% (local specification rate) of the models can be 
segmented and annotated automatically. However, 
the SVM classifier cannot find all the 3D models 

Class 

name 

3D 

models 

(m) 

Classified 

models (c) 

Specified 

models (n) 

Global 

specification rate 

(%) 

Local specification 

rate (%) 

Average 

specification rate 

(%) 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

seat 

furniture 

77 26 37 38 22 31 32 33.8 48.1 49.4 84.6 83.8 84.2 28.6 40.3 41.6 

table 

furniture 

78 24 43 47 21 37 41 30.8 55.1 60.3 87.5 86.0 87.2 26.9 47.4 52.6 

car 

vehicle 

113 54 75 80 52 72 77 47.8 66.4 70.8 96.3 96.0 96.3 46.0 63.7 68.1 

human 

biped 

149 11

5 

130 134 76 85 87 77.2 87.2 89.9 66.1 65.4 65.7 51.0 57.1 59.1 

winged 

vehicle 

242 139 171 171 101 124 124 57.4 70.7 70.7 72.7 72.5 72.5 41.7 51.2 51.2 

Average 49.4 65.5 68.2 81.4 80.7 81.2 38.9 51.9 54.5 

Table 1: Results of automatic specifying semantics of 3D models 



 

with the limited training models, because a class of 
PSB usually contains several subclasses. Therefore, 
the final average specification rate is only nearly 
55%. An impression of the impact of relevance 
feedback and template models is shown in Fig. 10. 
The average specification rate can be improved, 
although only to a limited extent, by increasing the 
number of template models and iterations. We 
usually need at least 2 template models of each 
group and 2 iterations to get a good performance of 
automatic annotation of models. 

7. CONCLUSIONS 

This paper presents a method for specifying 
semantics of 3D models with limited interaction. All 
the models in the database are first classified. For 
each class, we segment and annotate a few template 
models interactively. The rest of the models can be 
separated based on segmentation methods (and 
parameters) of template models. Automatic 
annotation can be achieved by subgraph matching 
which finds a map between a sub-AAG representing 
the parts of the template model and an AAG 
representing the parts of partitioned models. In the 
end, the specified models are used to improve the 
classification. 

Our method can achieve a good rate of automatic 
annotation of 3D models with limited user 
interaction, especially for the 3D models that can be 
separated into consistent parts. Man-made models 
compared with freeform ones are easier to be 
segmented into consistent parts because the 
segmentation method has no parameters. Thus, man-
made models have a higher specification rate, which 
is indicated by the average specification rate in 
Fig. 10. 

Fig. 11. Inconsistent segmentation results using the 
same segmentation method 
 

However, in experiments, although we use the 
same segmentation method (and parameters) to 
segment similar models, sometimes we still get 
inconsistent segmentation results which means the 
model parts cannot be annotated successfully. In this 

case, we can provide more template models of each 
class for automatic segmentation and annotation. For 
example, in Fig. 11, the two models from the class 
“winged vehicle” are partitioned inconsistently (one 
of the wings is segmented into two parts) with the 
same segmentation algorithm. We cannot use the 
template model (a) to annotate model (b). Therefore, 
we also use model (b) as a template model for 
automatic annotation of the class “winged vehicle”. 

In future work, we will test more segmentation 
methods, especially for freeform models. We will 
also consider more geometric and topologic 
relationships among segments in the procedure of 
subgraph matching for automatic annotation. 
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