
SimPort: a multiplayer management game framework

Jeroen Warmerdam
1,2

, Maxim Knepflé
1,2

, Rafael Bidarra
1
, Geertje Bekebrede

3
, Igor Mayer

3

1 Faculty of Electrical Engineering,

Mathematics and Computer Science

Delft University of Technology

P.O. Box 5031

2600 GA Delft, The Netherlands

r.bidarra@ewi.tudelft.nl

2 Tygron – Serious Gaming & Media

Brasserskade 50

2612 CE Delft, The Netherlands

j.warmerdam@tygron.nl

m.g.knepfle@tygron.nl

3 Faculty of Technology, Policy and

Management

Delft University of Technology

P.O. Box 5015

2600 GA Delft, the Netherlands

g.bekebrede@tbm.tudelft.nl

i.s.mayer@tbm.tudelft.nl

Keywords

Serious games, Management games, Multiplayer games,

Game framework, Port Planning

Abstract

The serious games industry needs game engines, or

frameworks, that have been developed specifically with

this sector in mind. This paper discusses the benefits of

creating a serious gaming engine. This is demonstrated

on the basis of SimPort, a novel multiplayer management

game framework. SimPort has shown to be very

powerful, functional and easy to use in the development

of MV2, a game module simulating a major expansion

project, the Maasvlakte 2 area, of the Port of Rotterdam

in the Netherlands [8]. In addition, from MV2 real-life

usage so far, players and tutors have concluded that this

game is not only educational, but also a lot of fun to play.

1 Introduction

Playing computer games is becoming an increasingly

popular activity in day-to-day life. This has led to

considering the use of games for purposes other than

simple entertainment, like education, management,

decision and policy-support.

As serious games become a normal activity, different

genres will appear and become accepted as such. This

paper focuses on the Management Game genre (Section

2), briefly describing the current state-of-the-art. The

core of the paper discusses the necessity for specific

game engines that simplify and speed up the production

of Management Games, and presents SimPort as an

example of how this has been realised [10] (Section 3).

Subsequently, some choices that were made during the

production of SimPort are presented (Section 4)

Next, a description of how the engine evolved into its

current state is presented, (Section 5), together with a

practical evaluation of how real-life players experienced

a game created with this engine. We also present

recommendations for further research (Section 6).

Finally, we draw some conclusions (Section 7).

2 Management Games

It is important to define what exactly the relevance of

playing management games [9] is. For many decades,

computers have assisted management somehow, but the

role of computer games is essentially different. First this

difference will be addressed, followed by an explanation

of the aforementioned importance. Finally, two example

games are presented and their relation is defined.

2.1 Decision visualisation

A well-known application of a computer system during

the production and design of a complex system is the

Decision Support application. Turban described a

Decision Support System (DSS) as follows: "an

interactive, flexible, and adaptable computer-based

information system, especially developed for supporting

the solution of a non-structured management problem for

improved decision making. It utilizes data, provides an

easy-to-use interface, and allows for the decision maker's

own insights." [7].

When creating a management game, it is important to

avoid that the players get the feeling that they are dealing

with a DSS; instead, it should always be apparent that

they are playing a game. Playing a game puts a person in

a different mindset than when working on simulations. If

this is not handled properly, not only are the benefits that

a game has over a DSS lost, the benefits that a DSS has

also remain unachieved. To avoid this, a designer should

opt for a computer game that does not necessarily

support the player in making decisions. Instead, he

should create a game that visualises the results of

players’ choices as they are made. By visualising the

results, players see the effects of their choices and

become more immersed in the game.

2.2 The rise of management games

Designers and managers need to have a better

understanding of complex system behaviour. To this end,

they can benefit from experiencing the long-term

behaviour and unanticipated and sometimes undesirable

consequences of their complex system design before it

has been implemented. The ability to manage complexity

begins with an awareness of and insights in the nature of

complex systems. [4] Direct experience of what can

happen or what can go wrong is often very effective for

raising awareness and insights. Nevertheless, in most

cases, such direct experience is difficult to obtain from

real infrastructures or other real-world systems without

possibly serious consequences. Therefore, games are a

good substitute because they can generate learning

experiences in a relatively fast and safe manner.

It is important to realise that there is an increasing

trend to use Management Games in a large variety of

settings. This is evident from the increasing interest in

the subject in the media and research. Therefore, it is

crucial that the development and production of such

games be facilitated and assisted by adequate tools and

techniques.

2.3 SimMV2

In late 2004 Delft University of Technology and the Port

of Rotterdam combined their efforts to create a

management game about extending the port of

Rotterdam. This resulted in the first version of SimMV2

in the summer of 2005. In this game three players build

the new port extension in 30 years simulated time.

The initial target audience where port experts. But

students at the University also proved to be a good

audience resulting in an actively played game. The game

was initially setup as exclusively web-based, using

mostly Flash [5] and Java Enterprise [6] in a web

browser, therefore with limited capabilities. More

features where being requested conflicting with the

already growing limitations and network overhead. The

need for a new version became clear.

2.4 SimPort

In late 2005 the two lead programmers of SimMV2

founded a new company called Tygron, and started

construction of the next generation called SimPort.

Having detailed knowledge of the possibilities and

limitations of the SimMV2 game, they came up with a

new framework. SimPort is totally built in Java [6] from

bottom up, giving it more possibilities.

SimPort runs on any system that supports Java 5.0 and

for which LWJGL [11] native interfaces exist.

SimPort was developed in house, together with the Delft

University of Technology and the Port of Rotterdam, due

to the lack of Java gaming engines and the price tags

associated with other commercial engines.

3 Architecture

This section deals with the benefits of an engine for

serious games. For this, the SimPort Framework is used

as an example.

3.1 Benefits of a serious games engine

The production time of a serious game is often shorter

than that of the average entertainment game, because the

subject of the game, the client and the message that it

conveys are, themselves, limited by time constraints.

This is one of the major factors that hold the visual

quality of the serious games back from their

entertainment counterparts. As a result, developers of

serious games will need to use an existing game engine,

or framework, if they want to keep to this short

production time, while still delivering a decent looking

game.

The entertainment industry has provided developers

with several game engines to produce their games, most

of which come at a very steep price. These engines allow

developers to focus their production on factors that make

their game unique, and handle basic aspects like walking

and collision detection for them. Much of this

functionality will not be used in a serious game and,

instead, a lot of time will still be spent on developing

serious game-specific elements.

A game engine that has been targeted at serious game

developers will do the same as the entertainment

equivalent, except that (i) it also delivers those elements

that are not present in entertainment games and (ii) it

leaves those elements out that are not necessary. The

former allows for more interesting development as

developers can get to the actual game creation, while the

latter makes for a cleaner and lighter package.

3.2 The Framework

The Framework needs to provide a number of features

for it to be useful. For example, to allow for multiplayer

sessions, all network communication needs to be handled

by the Framework. Also, it needs to be expandable, to

allow for development of game specific elements. The

SimPort Framework fulfils both of these criteria. In this

subsection both the server side and the client side of the

Framework are described.

Figure 1. Architecture Overview

3.2.1 The Server

The SimPort Framework has been set up from the

beginning as a multiplayer game framework, and

combines a number of general-purpose parts. Functions

like saving a game session to Extensible Markup

Language [2] (XML) data and the handling of

concurrency problems are typically done the same way

for every possible game implementation. This provides

the designer the freedom to concentrate on the more

game-specific elements of the game. A central controller

object, called the Brain, allows the game developer to

attach game specific Controller object. The game

designer can extend a Controller object at will, to his

own liking in order to make it suitable for his specific

needs. Each Controller contains a list that can be filled

with game specific objects extending the Item objects.

By means of annotation [3], it can be defined which

variable in the Item extending object should also be

saved to XML data. An example of such a controller is

the CustomerControl. It can have methods like “contact

this customer” and keep a list of all the customers. There

is also a MapManager if the game contains a map of its

world. When the Framework is started these controllers

will be initialized and the data in the list is filled from a

saved XML file. The Framework also synchronizes the

data in these lists with the client computers.

Besides the controllers, a server object must be

extended. This object is a Remote Method Invocation [1]

(RMI) object and is used by the clients to give their

commands. Each method can connect to a controller in

this way to execute commands in a manner that is

concurrently safe.

3.2.2 The Client

The Framework can have multiple clients connected to it

that do not necessarily have to have the same

functionality. One client can be projecting a view of the

game world to a wall, without other interactions, while

another client can be used as the game interface for the

players. Each of these clients has a Status object

containing synchronised data from the server. One of

these data instances is an abstract map. The developer

has the option of implementing a game specific extension

of this map. The extension defines the way the map is

displayed. The Framework takes care of the actual

rendering and updating. Any other client-side objects can

subscribe to the Status object to receive game-wide

updates.

The core of the client-side Framework is fairly rigid,

as it has a wide range of built-in basic game interaction.

Around this core the majority of the features are

customizable. A central manager arranges the order in

which the game progresses through different states. The

developer can add states to this controller and control the

different phases that the game moves through. This

allows e.g. for customisation of introduction movies,

evaluation screens and menu structures.

4 Implementation choices

The production of a game framework touches on many

different subjects, because many different problems need

to be solved. It is important to stay flexible, so as not to

limit the range of applicability. On the other hand, it is

important to moderate this flexibility so that developers

have the tools they need to focus on the core of their

games.

This section details two of the major choices that

were made in the design and implementation of the

SimPort game framework. Though these subjects are not

the only choices that were made, they are two of the

more interesting ones: (i) the Level Of Detail strategy

chosen, and (ii) the manner in which data is kept

synchronized between the clients and the server, by

means of versioning.

4.1 Level of Detail strategy

One of the features that makes the client side of the

SimPort Framework so interesting is the possibility to

navigate through a three dimensional representation of

the game world. This added functionality brings with it a

certain level of complexity as the world is rendered. The

framework tries to limit the load of this rendering as

much as possible by a so-called Level Of Detail (LOD)

strategy. Objects that are further away from the viewer

need less detail for them to stay visually pleasing. The

goal of a good LOD strategy is to be intelligent about

what LOD is chosen for each object.

Figure 2. The LOD strategy

The current solution entails two views of the map.

The first is an overview, as though the player was

looking at a planning map. Company buildings and

terrains area visible as outlined areas, with no structures

visible. As the player comes closer, the view changes to

something resembling a satellite view. The texture of the

terrains becomes visible, as does the water, but still no

buildings are visible.

Figure 3. The Radar View

The radar view is nothing more than a textured

square, greatly reducing the necessary calculations. The

satellite view adapts according to the more traditional

LOD strategies, as the map is broken up into smaller

scene elements, which are only rendered when they are

on the screen. This strategy works well, because when

the view switches, not the entire map but only a part of it

is visible.

The buildings in the world are handled by a very

basic LOD strategy. When the viewer is far away from

the building, the building is not shown at all. Only when

the view comes close enough do the buildings become

visible. As the framework goes through further iterations

the same strategy that is used for the map can be used on

the buildings, allowing for a more gradual transition from

invisible to fully visible.

4.2 Versioning

Keeping versions of objects in the game is required to

keep all client computers in phase with each other. When

objects update a new version is spread. These objects are

located in lists in the Controllers and map matrix. All

objects have in common that they extend the Item object.

An Item keeps track of its version number and the

object’s ID, which is also its position in the list. Each

Controller also keeps an overall list version number.

To update to the latest version a client computer

sends a version request to the server. To keep traffic to a

minimum the client sends only one array containing

integer numbers. The first integer represents the client’s

overall version status. This number is calculated by

summing up all version numbers of each list and the map

matrix. At the server side this overall number is

compared to an overall server number. If these are not the

same an update must have occurred, because if an

object’s number is updated the version number of the list

is increased as well. When the to be updated list is found,

the system cycles through it and takes out the objects

with a version number higher than the client’s version

number. Finally the updated objects are sent back in

small lists to the client. In most cases this results in

comparing two numbers and sending a predefined array

of integers. In case of an update only the updated object

are sent. This can be different for each client computer. It

is also possible for a client’s Status object to make a

subscription to only receive list updates or map updates.

This is particularly useful, for example, in a controller

application where no map is needed.

When the client’s Status object is up to date, it is time

to let the game know. Firing custom events to different

parts of the game, containing the total list, does this. The

map has a special event containing only the updated

blocks.

5 SimPort Evaluation

In the previous sections we explained the importance of a

serious game engine and introduced the SimPort

Framework. This section will briefly describe how this

engine came into existence and what its role can be in the

serious game sector.

The creation of SimPort was triggered by the

production of the game SIM Maasvlakte 2 (SimMV2),

which, in turn, inspired the production of SimPort and its

SimPort MV2 module.

5.1 SimPort MV2

The framework makes it possible to develop more

serious games, of a similar nature, in shorter time.

SimPort is not limited at all to the port area in Rotterdam

but other ports can also be played. Furthermore, the

application is not browser-based anymore, and supports

3D graphics and GUI, while maintaining LAN and web-

based networking.

Figure 4. SimPort Game View

At the moment SimPort is ending its development

cycle and the first games are being played at the

University. In late 2006 the first commercial version will

be released

5.2 Real-life experiments

SimPort and its predecessor have both been used in real-

life situations. “Preliminary findings suggest that the

game is of high quality, that players enjoy it and find it

educational and instructive” [4] was the evaluation after

the first few sessions of SimMV2 and the first life test

session of SimPort as raised similar reactions. The

game’s original target group was experts, but it has

shown its worth in other situations too.

Figure 5. Players at Work

Observations during the game and the results from

questionnaires indicate that generally the players very

much enjoyed the game. The game’s degree of

immersion was fairly good: players had to be urged to

stop for a lunch break a couple of times, and then found

that they had come back early to start playing again. The

active presence of two contacts from the Port of

Rotterdam in one of the student sessions seemed to

engage the students even more and improve their

performance. It triggered interesting discussions and

interactions between the professionals and the students,

and also demonstrated the value of the game for

education and training [4]. For a more detailed analysis

and quantification, please refer to [4].

With a serious game like SimPort MV2 it is easy to

fall into a simulation/decision support mood. It is

important to have the players be caught in the gaming

attitude, to achieve the learning benefits of playing the

game. Players were very active during every phase of the

game, and they fell into their respective roles easily. A

game needs to be enjoyable and SimPort MV2 has

definitely succeeded in this.

6 Recommendations

During SimPort’s production cycle a number of

questions arose pertaining to the creation of an all-

encompassing serious game engine. The criteria that such

an all-round engine would need to adhere to needs to

undergo further research. It will be necessary to study

whether the design of a catchall engine is truly viable, or

whether it might be more productive to design a small

number of separate, more specialised, engines. While the

former is preferable, research is needed to determine

whether it is viable.

7 Conclusions

The increasingly widespread use of computer games for

purposes other than entertainment, so-called serious

games, is finding an important niche in a variety of

management applications. However, the design and

development of such games cannot follow the same long

production cycles of current commercial entertainment

games. Therefore, all tools and techniques that help to

concentrate on the central management game and

simulation aspects are more than welcome by the serious

game developers. In this paper we described a platform

independent game framework that was specifically

developed for this purpose. As such, it is especially

suited for developing new management games, as it

avoids having to start from scratch each time.

The framework was first utilized in the

implementation of the SimPort MV2 module, a

multiplayer game simulating the expansion process of the

Port of Rotterdam along a period of 30 years. This game

has been played several times by students and

professionals together at the Delft University of

Technology, Erasmus University and the Port of

Rotterdam.

Out of these real-life experiments, players said they

considered the game of high quality, they enjoyed it and

found it quite instructive. Student players emphasized

that they learned much about the complexity of the port

project, while professionals stressed that the game can

enhance communication and cooperation with the

authorities of the Port of Rotterdam. But probably most

important of all is the fact that the game provided an

opportunity for professionals and students to look at the

future of a complex project in an engaging and

entertaining way; thus creating the mindset needed to

learn from games.

8 Acknowledgements

The authors wish to thank the Port of Rotterdam for its

continuous support and knowledge in developing these

new games. Especially we wish to thank Anne-Kirsten

Meijer, Jan-Willem Koeman, and Maurits van

Schuylenburg for their contributions.

Edwin Branbergen and Hasso Schaap, students at the

Faculty of Industrial Design at TU Delft, for developing

the user interfaces of the SimPort MV2 game. Alexander

Hofstede, colleague at the Faculty of Technology, Policy

and Management (TBM) at TU Delft, for his outside

expertise and help during stressful times.

We also wish to thank Gijs Buijsrogge and Teun

Veldhuizen for assisting in the design of the original

game SimMV2 basis of SimPort.

9 References

1. Pitt, E. and McNiff, K., 2001. Java.rmi The

Remote Method Invocation Guide, Addison-

Wesley, Edinburgh Gate UK

2. Extensible Markup Language

(http://www.w3.org/XML/): XML Standard

website.

3. Annotations

(http://www.developer.com/java/other/article.ph

p/3556176): Website on how to make custom

annotations.

4. Bekebrede, G. and Mayer, I. (2006) ‘Build your

seaport in a game and learn about complex

systems’, J. Design Research. pp 2 & 25.

5. Flash (http://www.macromedia.com):

Macromedia Flash website.

6. Java (http://java.sun.org): Sun's Java

development website.

7. Turban, E. (1995). Decision support and expert

systems : management support systems.

Englewood Cliffs, N.J., Prentice Hall.

8. Port of Rotterdam (2004). Projectorganisatie

Maasvlakte 2, Project initiatie document

(Project Organization Maasvlakte 2, Project

initiation document). Rotterdam, Port of

Rotterdam: pp 87.

9. Duke, R. D. and J. L. A. Geurts (2004). Policy

Games for Strategic Management: Pathways

into the unknown. Amsterdam, Dutch

University Press.

10. Mayer, I., Bockstael-Blok, W. & Valentin, E.

(2004) A building block approach to simulation.

An evaluation using Containers Adrift, In:

Simulation and Gaming, 35 (1) pp 29-52. ISSN:

1046-8781.

11. Lightweight Java Gaming Library

(http://www.lwjgl.org).

11 Biography

Jeroen Warmerdam is an MSc

student in the faculty of Electrical

Engineering, Mathematics and

Computer Science of Delft

University of Technology, The

Netherlands. He is co-founder of

Tygron and has been working on the

SimPort project after starting its

development during his BSc project.

Maxim G. Knepflé is an MSc

student in the faculty of Electrical

Engineering, Mathematics and

Computer Science of Delft

University of Technology, The

Netherlands. He is co-founder of

Tygron and has been working on the

SimPort project after starting its

development during his BSc project.

Rafael Bidarra is assistant professor

Geometric Modelling at the Faculty

of Electrical Engineering,

Mathematics and Computer Science

of Delft University of Technology,

The Netherlands. He graduated in

electronics engineering at the

University of Coimbra, Portugal, in

1987, and received his PhD in

computer science from Delft University of Technology in

1999. He teaches several courses on computer games

within the CS programme 'Media and Knowledge

Engineering', and leads the research work on computer

games at the Computer Graphics and CAD/CAM Group.

His current research interests in this area include

procedural and parametric modelling, and advanced

techniques for animation and path finding. He has

published many papers in international journals, books

and conference proceedings, and has served as member

of several program committees.

Geertje Bekebrede is a PhD

researcher in the faculty of

Technology, Policy and

Management at Delft University of

Technology, the Netherlands.

Igor S. Mayer is an associate

professor in the faculty of

Technology, Policy and

Management at Delft University

of Technology, the Netherlands.

He is also a director of the Delft

Rotterdam Centre for Process Management and

Simulation (www.cps.tbm.tudelft.nl). He is a co-founder

and board member of Saganet – the Netherlands’

Simulation and Gaming Association - and a member of

the Netherlands Institute of Government (NIG).

