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ABSTRACT 

 

Feature modelling is nowadays the predominant way of product modelling, in which geometric and 

functional information is stored in a single product model. The basic concepts of feature modelling in 

general, and the state of the art in commercial feature modelling systems, will be presented first. This 

will be followed by an overview of four major developments that solve shortcomings in such systems. 

First, in semantic feature modelling, it is possible to more adequately specify and maintain the 

meaning of features. Second, in multiple-view feature modelling, there is a specific feature model for 

each product development phase. Third, in collaborative feature modelling, teams of users can 

collaborate on the development of a product with full feature modelling functionality. Fourth, in 

freeform feature modelling, features with freeform shapes are made available. Some other 

developments are mentioned as well. 

 

Keywords: feature modelling, feature semantics, multiple views, collaborative modelling, freeform 

features. 

 

 

1. INTRODUCTION 

During the last decade, feature modelling has become the most popular way of product modelling. In addition to 

geometric information, functional information can be stored in a feature model, and this can considerably enhance the 

capabilities of a modelling system. 

Considering the functionality of current commercial feature modelling systems, one can conclude that, on the one 

hand, these systems provide very advanced modelling facilities, but that, on the other hand, there are still several 

major shortcomings. This paper presents developments that can solve some of the most important shortcomings. All 

these developments are explained in the context of research projects performed at Delft University of Technology. 

The first shortcoming in current feature modelling systems considered here is that the meaning, or semantics, of 

features is not adequately maintained during the whole modelling process. The semantic feature modelling approach 

does handle this. How the semantics of all features in a feature model is specified in this approach, and how the 

validity of the model is maintained during the whole modelling process, is described. 

The second shortcoming is that product models with multiple, integrated feature views for different product 

development phases are not yet possible. A view is an application-specific feature model, with features relevant for 

that application. An approach that does support integrated views for conceptual design, assembly design, part detail 

design and part manufacturing planning is presented. 

The third shortcoming is that collaboration of several users in developing a product with a feature modelling system is 

not yet adequately supported. A web-based collaborative feature modelling approach that offers interactive modelling 

facilities, but also functionality such as validity maintenance and multiple views, is described. 

The fourth shortcoming is that mostly only regular-shaped and simple freeform features can be used, whereas in 

practice products often contain more complex freeform shapes. Because of the many benefits of feature modelling, it is 

worth developing techniques for freeform feature modelling as well. Some initial developments in this direction are 

discussed. 

The structure of this paper is as follows. In Section 2, some basic concepts of feature modelling will be introduced. In 

Section 3, the state of the art in current commercial feature modelling systems will be discussed, and the shortcomings 

mentioned above will be revisited. In Sections 4 to 7, the developments to solve these shortcomings will be elaborated. 

In Section 8, some conclusions about the developments discussed in this paper, and about other developments in 

feature modelling, are given. 
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2. FEATURE MODELLING 

Feature modelling can be considered as an extension of geometric modelling. Whereas in a geometric model only 

geometric information is stored in a product model, in a feature model functional information is associated with the 

geometric information. In this section, some basic terminology of feature modelling is introduced, and also some ways 

of working with features are mentioned. 

A generally accepted definition of a feature is that it is a representation of shape aspects of a product that are mappable 

to a generic shape and functionally significant for some product life-cycle phase. Functional information, e.g. on the 

use of the shape for the end-user or on the way the shape can be manufactured, can be associated with the shape 

information [1].  

Several types of features can be distinguished; protrusions, holes, slots and pockets being typical examples of 

frequently used ones. Although several attempts have been made to develop a complete classification of features, this 

has turned out to be very difficult. It is therefore important that new types of features can be easily introduced in a 

feature modelling system. 

All properties of a feature type are specified in the corresponding feature class, which defines a template for all its 

instances. This always includes the generic shape of the feature, and a number of parameters and constraints that 

characterise this shape. Examples of parameters are the length, width and depth for a rectangular pocket; examples of 

constraints are that the side faces of a rectangular pocket are pairwise parallel and pairwise perpendicular, and that the 

radius of a blind hole should be between 1 and 3 cm. Constraints are also used to define the parameterisation of a 

feature class. 

By specifying values for the parameters, an instance of a feature class can be created and then be added to a feature 

model. The instance is normally attached to other features in the model, i.e. some of its faces are coupled to faces of 

other features. Additional constraints can be used to relate the instance to other feature instances in the model. 

Examples of such constraints are that (the side faces of) two slots should be parallel, at a certain distance, and that the 

diameter of a hole should be half of the width of the protrusion it is attached to. So a feature model essentially consists 

of a set of feature instances and a set of constraints. 

A feature model is usually represented by a graph and a geometric model of the resulting shape. The graph contains all 

feature instances, with their shape, constraints and attach relations, and all additional constraints. The geometric model 

can be a boundary representation, but also a more extended representation, such as a cellular model [2], that is more 

suitable for advanced facilities such as validity maintenance (see Section 4). 

There are many applications of features. In product design, generic shapes with some function for the end-user of the 

product can be considered as features. In process planning for manufacturing, volumes in a product that can be 

manufactured with a single or a sequence of machining operations are considered as features. Other examples can be 

given, but it is important to realize here that each application can have its own way of looking at a product, i.e. its own 

feature model of the product, with features relevant for that application. Such an application-specific feature model is 

called a view on the product [3]. 

Independent of the application, there are basically three ways to determine features in a product model: design by 

features, feature recognition and feature conversion. 

In design by features, a designer specifies a feature model in an interactive modelling system, via a graphical user 

interface. He can create instances of feature classes in a library, by specifying values for the parameters, and add them 

to the model. In some systems, also new feature classes, so-called user-defined features [4] can be created by a user, 

after which instances of these classes can be added to the model. Feature instances can also be modified, by changing 

their parameters, or be removed from the model. The features that are specified may have a functional meaning for the 

end-user of the product, but can also be manufacturing features. In the latter case, the designer specifies a model that, 

more or less, corresponds to the way the product will be manufactured. 

In feature recognition, features are recognised from a geometric model of a product. Historically, this was the first 

method to identify features in a model, introduced in the context of manufacturing planning. Many methods for feature 

recognition exist, each one with its own advantages and disadvantages [1]. Among the most important categories of 

feature recognition methods are rule-based methods, graph-based methods, and geometric reasoning methods. Some 

successful feature recognition systems use combinations of these methods. 

Once a feature model of a product has been created, either by design by features or by feature recognition, other 

feature models of that product, which correspond to other views, can be derived by feature conversion. For example, a 

manufacturing planning view can be derived from a design view. Feature conversion is a relatively new technique, and 

forms the basis for multiple-view feature modelling systems (see Section 5).  

The rest of the paper will mainly be about design by features, i.e. feature modelling approaches in which feature 

models are created from scratch. 
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3. STATE OF THE ART IN COMMERCIAL SYSTEMS 

The past two decades have shown a significant development in product modelling in general. More and more powerful 

CAD systems began to emerge, providing, for example, better user-interaction facilities. In particular, 3D geometric 

modelling systems became more popular to industry, such as the car design and manufacturing sector. Further down 

the years, in the past decade, the geometric modelling systems evolved into even more powerful modelling systems 

embracing the feature concept. 

Several commercial feature modelling systems are now available [5], including, for example, Autodesk Inventor®, 

CATIA Designer®, Pro/Engineer®, SolidWorks®, and Unigraphics®. These systems offer all sorts of advanced, easy-

to-use modelling facilities. The functionality of the systems is more or less the same, generally transparent in their 

interfaces, particularly the user interface. On the basis of functionality, every system can be seen as a suite of programs 

used for many purposes, namely, design, analysis and manufacturing, of a virtually unlimited range of products. Some 

systems are solid modellers, whereas others include surface modelling facilities. 

Part models can be created starting from sketches or from imported geometric models. The systems also provide 

libraries of parts, including platform-specific standard parts, with powerful search facilities that often include graphical 

feedback. Features can be added to a part through menus. In addition, there are tools to parameterize parts using 

geometric constraints. Models often evolve into functional designs, which engineers generally call feature models. 

Assembly models can be created from parts models, normally including relations between them.  

The graphical user interfaces, with high-quality images of models, enable users to effectively interact with the models. 

With these, the user is able to navigate or explore models, e.g. with real-time panning, zooming, view-orientation, 

selection of specific parts or geometric elements, and many more. 

However, to date these systems suffer, in one way or another, from a number of major shortcomings, including the 

following: features are only a kind of macros, there exists only one feature model of a product, there are limited 

facilities for collaborative modelling, and there is a limited shape domain. These shortcomings are now explained in 

some detail. 

Firstly, in many current feature modelling systems a ‘feature’ is only a kind of shape macro. The result is that, whereas 

these macros manifest themselves as features at the user interface, only the geometry resulting at the time of creation of 

the feature is stored in the product model. Such systems are, in fact, only advanced geometric modelling systems. 

Other systems store some information about features in the product model, but this information is not consistently 

checked to ensure that the meaning of all features is adequately maintained during the modelling process. For 

example, in Fig. 1, a through hole in a model is turned into a blind hole by blocking one of the openings of the hole 

with a stiffener, without the system even notifying this change. Although the new model is geometrically correct, it is 

incorrect in the sense that the meaning, or semantics, of the feature has been changed from a through hole into a blind 

hole.  

 

 

 

  
Fig. 1. Changing a through hole into a blind hole. 

 

Secondly, many existing systems work with a single feature model of a product, which might be called a design view. 

Multiple, integrated views on a product are not supported. If another view on a product is needed, e.g. for a 

manufacturing planning application, this view has to be derived by a special feature recognition or conversion module, 

and the new view is not integrated with the design view.  

Thirdly, many systems lack high-level feature-based collaborative modelling facilities. Available collaborative facilities 

comprise a set of technologies that enable companies, together with their customers, to collaboratively design, produce 

and manage products. The problem of these facilities is that the level of communication is not feature-based, so that 

functional information is not fully accounted for. This often causes loss in design intent.  

Finally, current systems only provide a limited set of shapes for features, namely regular shapes and simple freeform 

shapes. This includes, for example, (rounded) prismatic shapes, cylindrical shapes, and shapes resulting from the 

extrusion of a freeform curve, but not general freeform shapes.  

In the next four sections, semantic, multiple-view, collaborative and freeform feature modelling are presented in that 

order. These sections address the aforementioned shortcomings faced in most of the current feature modelling systems. 
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4. SEMANTIC FEATURE MODELLING 

The first shortcoming of current feature modelling systems considered in this paper, is that the semantics of features is 

not adequately maintained during the whole modelling process. An example of this, in which a through hole was 

turned into a blind hole, was given in the previous section. This is undesirable, because one of the basic ideas of 

feature modelling is that functional information can be associated to geometric information. This association, however, 

becomes useless when the shape imprint of a feature, once added to the model with a specific intent, is significantly 

modified later by a modelling operation. 

Ideally, it should be possible to precisely specify the semantics of features by a set of validity conditions. In addition, all 

validity conditions of the features in a model should be checked by the system after each modelling operation. If some 

validity condition is no longer satisfied, e.g. one of the openings of a through hole is blocked, this should be notified by 

the system, and preferably the user should be assisted in overcoming this situation. 

An approach that supports these ideas is semantic feature modelling [6]. This approach guarantees that all design 

intent once captured in a model is maintained, bringing feature modelling to a level really higher than advanced 

geometric modelling. It involves, in particular, specification of the semantics of features in their respective classes, and 

maintenance of this semantics during modelling. 

Validity conditions in a feature class can be classified into two categories: geometric and topologic. For both, constraints 

are used. These feature constraints are members of the feature class, and are therefore instantiated automatically with 

each new feature instance. 

The geometry of a feature may be constrained by geometric constraints, e.g. requiring that some faces should be 

parallel or perpendicular. Another way of constraining the geometry of a feature, is by restricting the set of values 

allowed for a shape parameter with dimension constraints. For example, the depth of a slot feature could be limited to 

values between 1 and 10 cm. Finally, the geometry of a feature may be constrained by means of explicit relations 

among its parameters. These relations can be simple equalities between two parameters, e.g. between width and length 

of a square passage feature, or, in general, algebraic expressions involving two or more parameters and constants. For 

this, algebraic constraints are used. 

The shape of a feature is represented by a set of faces that provides full coverage of the feature boundary. However, 

for most features, not all faces are meant to effectively contribute to the boundary of the modelled product. Some 

faces, instead, have a closure role, delimiting the feature volume without contributing to the boundary. The 

specification of such properties is called topologic validity specification. For this, two sorts of constraints are used: 

boundary constraints and interaction constraints. 

A boundary constraint states the extent to which a feature face should be on the model boundary. An example of this 

is a pocket class for which the top face has a notOnBoundary constraint, which specifies that a pocket should remain 

open at the top, whereas the bottom face has an onBoundary constraint, which specifies that a pocket should remain 

closed at the bottom. 

Boundary constraints are insufficient to fully describe several other functional requirements that can be inherent to a 

feature class as well. These are better described in terms of the feature volume or feature boundary as a whole, and 

can be violated by feature interactions caused during incremental editing of the model. Feature interactions are 

modifications of shape aspects of a feature that affect its functional meaning. An example of this is that a slot is being 

split into two separate, smaller slots by intersecting it with another slot; this is called splitting interaction. Interaction 

constraints are used in a feature class to indicate that a particular interaction type is not allowed for its instances. 

In addition to feature validity conditions, there can also be model validity conditions, which specify conditions on or 

between specific instances in a feature model. For specifying such conditions, the same set of constraints is available as 

for specifying validity conditions in feature classes. 

Feature model validity maintenance is the process of monitoring each modelling operation in order to ensure that all 

feature instances still conform to the validity criteria specified for them, and that all model validity conditions are still 

satisfied. Validity maintenance can be split into two types of tasks: (i) validity checking, performed at key stages of each 

modelling operation; and (ii) validity recovery, performed when a validity checking task detected a violation of some 

validity criterion.  

During validity checking, it can be detected that a constraint is no longer satisfied because of a modelling operation, 

e.g. that a notOnBoundary constraint on the top face of a pocket is violated by blocking the face with another feature. 

In that case, the model enters an invalid state, and a valid model should be achieved again. This is straightforward if 

the operation is cancelled: all that is needed is to backtrack to the valid model state just before executing it, by 

‘reversing’ the invalid operation. 

However, to always have to recover from an invalid operation by undoing it is too rigid. It is often much more effective 

to constructively assist the user in overcoming the constraint violations, in order to restore model validity. In most 
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cases, if the user receives appropriate feedback on the causes of an invalid situation, it is likely that other corrective 

actions might preferably be chosen. The process of validity recovery therefore includes reporting to the user constraint 

violations, documenting their scope and causes, and, whenever possible, providing context-sensitive corrective hints. 

These automatically generated hints suggest solutions for violated constraints, and vary with the type of constraint 

involved. In the example of the blocked top face of a pocket, the feature that blocks the face is reported to the user, 

who can then reposition it to solve the problem. 

In order to overcome the invalid model situation, the user can specify several modelling operations in a batch. 

Execution of these reaction operations follows the same scheme as normal operations, which means that their outcome 

is checked for validity. At any stage when the model is invalid, the user may give up attempting to fix it, and backtrack 

to the last valid stage. 

The semantic feature modelling approach has been implemented in the SPIFF prototype feature modelling system 

developed at Delft University of Technology. The system uses a feature dependency graph and a cellular model [2] as 

main model representations. The cellular model can be used to check, for example, that the top face of a pocket is still 

open, and that a slot has not been split. Although a cellular model has numerous advantages, e.g. its evaluation is very 

efficient [7], other systems based on ideas from the semantic feature modelling approach use other representations [8, 

9]. 

 

5. MULTIPLE-VIEW FEATURE MODELLING 

One of the latest trends in product development is Product Lifecycle Management (PLM), which involves a set of 

technologies and processes that enable companies, together with their suppliers and customers, to collaboratively 

design, make and manage products throughout their entire lifecycle [10]. An important requirement for PLM is that a 

designer working in any product development phase can work with information that is relevant for that phase, without 

being diverted by information that is relevant for other phases only. However, the information for all development 

phases should be integrated, so that no inconsistencies arise. 

Current feature modelling systems do not adequately support this. Some systems have specific models for different 

development phases, but these models are not very well integrated. Other systems do integrate information for, for 

example, assembly design and part detail design, but these systems typically do not have specific models for these 

development phases. 

Multiple-view feature modelling can do better here, by providing an own view on a product for each development 

phase, and integrating all views. Each view contains a feature model of the product specific to the corresponding 

phase. Since the feature models of all views represent the same product, they have to be kept consistent. 

Quite a lot of research has been done on multiple-view feature modelling during the last years. Most of the approaches 

that have been developed work on a single part of a product. A new view on a part can be derived from an existing 

view by feature conversion, the process of converting one feature model into another feature model. Several views on 

a part can be simultaneously maintained by the system. Modifications made in one view, are automatically propagated 

to the other views on the part, also by feature conversion, although not all approaches propagate modifications in both 

directions. The approaches can be used to, for example, support design for manufacturing: while a part is being built 

with design features, these feature can be immediately converted into features in a manufacturing planning view, which 

can be used to concurrently check the manufacturability of the product.  

Such initial approaches to multiple-view feature modelling have been presented by, among others, de Kraker et al. 

[11], De Martino et al. [12] and Hoffmann and Joan-Arinyo [13]. All these approaches share two major shortcomings. 

First, the approaches focus on the later product development phases in which the geometry of the part has been fully 

specified, and, therefore, cannot be applied in the early product development phases such as conceptual design. 

Second, the approaches deal with a single part only. Real products, however, rarely consist of a single part. Dealing 

with products that consist of multiple parts, i.e. assemblies, does not only involve the separate parts, but also the 

relations between these parts. 

To counteract the disadvantages mentioned, and thus to better support the concept of PLM, an approach to multiple-

view feature modelling has been developed that supports more product development phases, in particular conceptual 

design, assembly design, part detail design, and part manufacturing planning [14]. 

In the conceptual design view, the product configuration can be modelled with conceptual components, which are to 

be implemented by one or more parts, and interfaces between these conceptual components, which are to be 

implemented by a connection. Components are built from a base shape, concepts, such as depressions and 

protrusions, and reference elements. Interfaces between components are characterised by means of degrees of freedom 

between the components. The complete geometry of the components does not have to be specified. For example, for 

some concept only certain properties, such as its maximum volume, might be specified. 
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In the assembly design view, the connections between the components in the product can be modelled with assembly 

features, in particular connection features [15]. A connection feature needs to be created for each interface in the 

conceptual design view, and linked to that interface. The interface and the connection feature should reduce the same 

freedom. In order to accommodate the connection feature, features may have to be created on the components in the 

assembly design view, e.g. a pin feature and a hole feature for a pin-hole connection feature. 

In the part detail design view, the detail shape of the parts can be modelled, typically with features such as through 

holes and rectangular protrusions. It allows the designer to refine the parts that are represented by the components in 

the conceptual design view, and which may have been refined in the assembly design view to accommodate 

connection features. Features may be created for concepts in the conceptual design view, and linked to those concepts. 

A feature should satisfy the requirements specified for the corresponding concept, e.g. that the volume should be less 

than 80 cm3. 

In the part manufacturing planning view, the way each part is to be manufactured is determined. Manufacturing 

planning features are similar to detail design features, but note that the set of features for the manufacturing planning 

view on a particular part can be quite different from the set of features that has been used to design the part, simply 

because a product can look different from the points of view of design and manufacturing planning. This view allows 

the designer to analyse the parts for manufacturability and to create a manufacturing plan for them. The feature model 

in a manufacturing planning view is automatically linked to the feature model in the corresponding part detail design 

view. See Fig. 2 for the part detail design view and the part manufacturing planning view on a part. 

 

 
 

 
Fig. 2. Part detail design view (a) and part manufacturing planning view (b) on a part. 

 

Consistency maintenance integrates all views on a product, by ensuring that their feature models remain consistent. It 

checks the consistency of pairs of feature models, based on consistency definitions specified for these pairs. If an 

inconsistency is found, it recovers the consistency of the models. This involves, among other things, constraint checking 

and feature conversion. 

The multiple-view feature modelling approach has been implemented in the SPIFF prototype feature modelling system.  

 

6. COLLABORATIVE FEATURE MODELLING 

Another important requirement for PLM, in addition to the availability of multiple views on a product, is that several 

designers can collaboratively model a product. Collaborative modelling systems are distributed multiple-user systems 

aimed at supporting engineering teams in co-ordinating their modelling activities. So far, mainly tools have been 

developed that somehow support collaborative design activities. For example, tools for collaborative viewing and 

markup of models via Internet are available, providing concepts such as shared cameras and telepointers. However, 

such tools are primarily focused on inspection, e.g. using simple polygon mesh models, and do not support real 

modelling activities. In other words, they are valuable assistants for teamwork, but no real modelling systems. 

At Delft University of Technology, the prototype collaborative feature modelling system webSPIFF has been developed 

that offers advanced feature modelling facilities to its users, while at the same time providing them with the necessary 

co-ordination mechanisms to support an effective collaboration. webSPIFF provides a scheme for hierarchically 

structuring a product into components and parts, and meanwhile assigning each component and part to one or more 

team members, responsible for its actual development [16]. Typically, in a collaborative session to develop a 

component or part, participants would be provided with their own, application-specific views on the product model. 

The co-ordination mechanisms should solve the critical problems of concurrency and synchronisation that characterise 

collaborative design environments. Concurrency involves management of different processes trying to simultaneously 

access and manipulate the same data. Synchronisation involves propagating modified data among users of a 

distributed application, in order to keep their data consistent. 

(a) (b) 
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webSPIFF has a client-server architecture [17]. The clients perform operations locally as much as possible, in particular 

regarding visualisation of, and interaction with, the feature model. Only high-level information messages, e.g. 

specifying modelling operations, as well as a limited amount of model data necessary for updating the client data, are 

sent over the network. The server co-ordinates the collaborative session, maintains a central product model, and 

provides all functionality that cannot, or should not, be implemented on the client. In particular, as soon as real feature 

modelling computations are required, these are executed at the server, on the central product model, and their results 

are eventually exported back to the clients. An important advantage of the client-server architecture is that there is only 

one central product model in the system, thus avoiding inconsistency between multiple versions of the same model. 

This type of architecture is therefore also used by other collaborative modelling systems [13]. 

As a basis for the server, the SPIFF feature modelling system was taken, which offers several advanced modelling 

facilities, including validity maintenance functionality and multiple views, as discussed in the previous sections. A 

session manager stores information about an ongoing session and its participants. It manages all communication 

between webSPIFF clients and the SPIFF modelling system. Since several session participants can send modelling 

operations and queries to the server at the same time, concurrency must be handled at the session manager. It is also 

the task of the session manager to synchronise session participants, by sending them updated model data when 

needed. 

The clients of webSPIFF are using standard web browsers. A user can join an ongoing collaborative session, or start a 

new one, by specifying the product model he wants to work on and the desired view. The current version of webSPIFF 

provides views for assembly design, part detail design and part manufacturing planning. Information on the feature 

model of the view is retrieved from the server. 

Obviously, clients should be able to specify modelling operations in terms of features and their entities; for example, a 

feature, to be added to a model, should be attachable to entities of features already in the model. After a feature 

modelling operation, with all its operands, has been fully specified, it is sent to the server, where it is checked for 

validity and scheduled for execution. This can result in an update of the product model on the server, and thus also of 

the feature model in the view of each session participant. 

In addition to the above functionality, several visualisation and interactive facilities of the SPIFF system have also been 

ported to the clients. webSPIFF clients provide two ways of visualising the product model. First, a high-quality feature 

model image, generated at the server, can be displayed. Second, a visualisation model can be rendered that supports 

interactive modification of viewing parameters, e.g. rotation and zoom operations. After the desired viewing 

parameters have been interactively set, they are sent to the server, where a feature model image corresponding to the 

new parameter values is rendered and sent back to the client, where it is displayed. webSPIFF also uses a selection 

model, providing facilities for interactive specification of modelling operations, e.g. selecting features or feature entities 

on a feature model image. 

To support all these facilities, the webSPIFF clients need to locally dispose of some model data. This data is derived by 

the server from its central model, but it does not make up a real feature model. webSPIFF clients have just enough 

model information to be able to autonomously interact with the feature model, i.e. without requesting feedback from 

the server. Client model data is never modified directly by the clients themselves. Instead, updated model data is sent 

back to the client after a modelling operation has been executed at the server. In addition, appropriate updated model 

data is sent to all other session participants as well. This consists of, possibly several, new feature model images, a new 

visualisation model, and an incremental update of the selection model. 

A good distribution of the functionality between the server and the clients has resulted in a well-balanced system. On 

the one hand, the server provides participants in a collaborative modelling session with the advanced functionality of 

the SPIFF feature modelling system. On the other hand, all desirable interactive modelling functionality is offered by the 

clients, ranging from display of feature model images, to interactive model specification facilities. 

  

7. FREEFORM FEATURE MODELLING 

In almost all current feature modelling systems, only regular-shaped and simple freeform features, called simple 

features in this section, can be used. However, products in practice often contain more complex freeform shapes. 

Feature modelling with a shape domain extended to such freeform shapes is called freeform feature modelling. 

Freeform features can be defined in a similar way as simple features. They still correspond to generic shapes, but there 

is more modelling freedom for the shapes. A distinction can be made between freeform surface features and freeform 

volumetric features. Freeform surface features consist of one or more freeform surface patches, and can be used for 

modelling thin artifacts like panels and car bodies; see Fig. 3 for three examples. Freeform volumetric features consist 

of a volume bounded by a set of freeform faces, and can be used for modelling volumetric parts with freeform faces; 
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features like protrusions and depressions can still be used in this context, but now with freeform faces. Typically, the 

freeform surface patches or freeform faces are modelled with NURBS [18]. 

  
Fig. 3. A ridge, a bump and a peak freeform surface feature. 

 

Many concepts mentioned in Section 2 for simple features can be mapped to freeform features in a straightforward 

way. A detailed survey of the basic ideas of freeform feature modelling is given in [19]. That survey shows that 

research on freeform feature modelling is still in its preliminary stage. Here, some recent developments are mentioned, 

and a number of open issues are indicated. The following will refer to both freeform surface feature and freeform 

volumetric features, unless stated otherwise. 

The definition of a freeform feature class is more complicated than for simple features. The generic shape now has to 

be modelled with, for example, NURBS. In addition, a meaningful set of parameters has to be chosen that makes 

intuitive instantiation and modification of the feature possible, and a mapping between these parameters and the low-

level definition entities of the NURBS has to be established. 

Because of the large shape domain of freeform features, it is impossible to predefine all feature classes in the context of 

freeform feature modelling. It is, therefore, very important that new user-defined feature classes [4] can be created. A 

way to do this for freeform volumetric features, which makes use of special definition points and constraints between 

these points, is presented in [20], and a way to do it for freeform surface features, which makes use of a general 

classification of freeform surface features [21], is presented in [22]. 

Freeform feature instances can again be created in a model by determining values for the parameters, but their 

‘attachment’ to other features is more complicated than for simple features, as the feature faces that are coupled can 

have complex shapes, and therefore usually do not match. A way to realise attachment for some types of freeform 

volumetric features is presented in [23]. 

A freeform feature model can still be represented by a graph, with all feature instances, attach relations and model 

validity constraints, and a geometric model of the resulting shape, e.g. a boundary representation or a cellular model 

with NURBS patches for freeform volumetric features. 

Many difficult problems remain to be solved to develop freeform feature modelling into a mature concept. Some of 

these problems are indicated here. 

The idea that properties that correspond to functional information can be included in freeform feature classes and in 

freeform feature models, by validity conditions, and that these properties are maintained during the whole modelling 

process, has hardly been explored, but seems nevertheless very promising. One can easily imagine conditions that all 

instances of some freeform feature class have to satisfy, e.g. that the curvature of a surface patch or a face is limited, or 

conditions on interaction between feature instances, e.g. that splitting by another feature is not allowed. Such validity 

conditions can again be specified with constraints, which may become quite complex. Validity specification and, in 

particular, validity maintenance for freeform feature modelling are major issues of our current research. 

Several methods have been proposed for freeform feature recognition [19], but better and more general methods are 

required. One interesting method that is being developed further is working with template matching [24]. Considering 

the large variety of available methods for recognition of simple features, much more research is to be expected in this 

area. 

In a joint project with colleagues in the Faculty of Design Engineering of Delft University of Technology, we are 

currently integrating freeform feature recognition and design by freeform features in a single system. Given a geometric 

model, a freeform shape in the model may be recognised as a freeform feature, after which new instances of the 

corresponding feature class, satisfying the constraints included in the class, may be added to the model. 

Feature conversion and multiple-view feature modelling are subjects that have not yet been tackled in the context of 

freeform features. Several topics mentioned above come together here, such as validity specification and maintenance, 

and feature recognition. 
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8. CONCLUSIONS 

Feature modelling is an attractive way of product modelling, because of the possibility of integrating functional and 

geometric information, but current feature modelling systems still have major shortcomings. Developments to solve 

four of these shortcomings were discussed in this paper. 

In this section, some conclusions about these developments, some future work related to these developments, and 

some other interesting research areas in feature modelling are discussed. 

The semantic feature modelling approach has turned out to be a very useful and powerful way of fulfilling a major goal 

of feature modelling: capturing and maintaining design intent in a product model. However, more research should be 

done on which semantics is relevant for product modelling, and how to specify and maintain it. 

Multiple-view feature modelling is an attractive approach to support multiple product development phases, e.g. in a 

PLM context. Many extensions can be thought of. In particular, new types of views can be introduced, e.g. idealised 

views of models for finite-element analysis, and conversion between views can be further automated. 

Collaborative feature modelling is a very interesting option for collaborative modelling, because it can offer all 

advantages of multiple-view feature modelling to the participants in a collaborative session. Several aspects require 

further attention, e.g. authorisation rights and security issues. 

Freeform feature modelling is a very promising and useful extension of feature modelling to cover a larger shape 

domain. However, many intricate problems remain to be solved, in particular validity maintenance and conversion of 

freeform feature models. 

Beside the developments discussed in this paper, there is much more work going on to further enhance the 

functionality of feature modelling systems. This includes research on: 

• more powerful constraint solving techniques [25] 

• families of objects with well-defined semantics [26] 

• deformation techniques for freeform features [27] 

• exchange of feature models between different systems, without losing semantic information [28] 

• exploitation of the feature concept in other applications, e.g. advanced manufacturing [29]. 

Altogether, the developments mentioned will contribute to making feature modelling more mature, and thus even more 

attractive as the way of product modelling in the future.  
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