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Introduction

This supplementary material contains additional experimental results concerning the method pre-
sented in [NBH18].

1 Choice of basis functions

In Section 4 of [NBH18], the construction of the subspace basis is introduced. After sampling, a
preliminary matrix Ũ ∈ Rn×d in which the ith column represents a locally supported function cen-
tered at the sample point vsi is constructed. The function takes the value one at vsi , monotonically
decreases (in radial direction) in a neighborhood around vsi , and vanishes outside of the neighbor-
hood. The size of the support of the functions is controlled by a global parameter ρ. We use the
cubic polynomial

pρ(r) =

{ 2
ρ3 r

3 − 3
ρ2 r

2 + 1 for r ≤ ρ
0 for r > ρ

,

which satisfies pρ(0) = 1, ∂∂rpρ(0) = 0, pρ(ρ) = 0, and ∂
∂rpρ(ρ) = 0 for our construction.

Figure 1: Experimental results that compare the approximate eigenvalues computed using different
functions for basis construction to a reference solution are shown.

Of course, other choices of functions are possible. In this section, we describe three alterna-
tive choices of functions. Figure 2 shows graphs of the functions for illustration. Figure 1 shows
experimental results that compare the resulting approximate eigenvalues to a reference solution.
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The first alternative function is the linear polynomial

plinearρ (r) =

{
1− r

ρ for r ≤ ρ
0 for r > ρ

,

that satisfies pρ(0) = 1 and pρ(ρ) = 0. Compared to the cubic polynomial, this polynomial is
simpler, but only conituous and not differentiable at ρ.

Figure 2: Graphs of the four functions for ρ = 1 are shown.

The second alternative is the fifth-order polynomial

pfifthρ (r) =

{
− 6
ρ5 r

5 + 15
ρ4 r

4 − 10
ρ3 r

3 + 1 for r ≤ ρ
0 for r > ρ

,

that satisfies pρ(0) = 1, ∂∂rpρ(0) = 0, ∂
2

∂r2 pρ(0) = 0, pρ(ρ) = 0, ∂∂rpρ(ρ) = 0, and ∂2

∂r2 pρ(ρ) = 0. This
polynomial is not just once, but twice differentiable at ρ.

The third alternative is an exponential function

pexpρ (r) =

{
e
− log(2)r2

0.452ρ2 = for r ≤ ρ
0 for r > ρ

,

that we cut off at ρ.
In our experiments, we compared the approximation error for the eigenvalues we obtain with the

different functions and found that the third-order and fifth-order polynomial and the exponential
function, produce comparable approximation errors, where the third-order polynomial performs
slightly better than the other two. The linear function produced higher errors. An example of
results is shown in Figure 1. In this example 1000 approximate eigenvalues that computed in a
1000-dimensional space are shown. Note that in the submission we suggest not to use all 1000
eigenvalues but rather only the first 500.

2 Eigenfunctions and edge flips

To put the approximation results for the Laplace–Beltrami eigenfunctions discussed in Section 5 of
the paper into a broader context, we want to add an experiments that explores how the eigenfunctions
change when the metric of a surface is slightly changed. For this, we re-meshed the kitten model
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by applying a series of edge flips. All vertices are kept in place, but the flips change the metric and
hence the discrete Laplace–Beltrami operator. Images of the two meshes are shown in Figure 3.
We computed the lowest 500 eigenfunctions of both meshes. To compare them, we looked at the

Fourier coefficients, aik =
〈

Φ̃i,Φk

〉
L2

, of eigenfunction Φ̃i of the kitten with flipped edges in the

eigenbasis {Φk} of the kitten before edges are flipped. Plots of the Fourier coefficients of some of the
eigenfunctions are shown in Figure 3. We observed that the difference of the eigenfunctions resulting
from the edge flips is of similar magnitude as the difference to the approximate eigenfunctions
computed with our approximation algorithm as shown in Figure 7 of the paper.

Figure 3: Eigenfunction of the kitten model before and after flipping some edges are compared. The
top row show an image of the kitten model and zoom-in images of the mesh before and after some

edge flips. The bottom row shows plots of the Fourier coefficients, aik =
〈

Φ̃i,Φk

〉
L2

, of eigenfunction

Φ̃i of the kitten with flipped edges in the eigenbasis {Φk} of the kitten before edges are flipped.

3 Comparison to mesh coarsening

In Section 5 of the submission, the proposed method is compared to a mesh coarsening approach for
eigenvalue approximation and Figure 6 (of the submission) shows one example of approximate eigen-
values computed with the proposed method and mesh coarsening. Figure 4 of this supplementary
material shows more examples with a comparable setting on different surfaces.
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Figure 4: Approximations of the first 1000 eigenvalues of the Laplace–Beltrami operator on the
Fertility, the Kitten and the Armadillo mesh are shown. The reference solutions (blue), compute
with MATLAB’s sparse eigensolver, is compared with approximations computed with the proposed
scheme with 2k (green) and 5k (red) dimensional subspaces and computed from coarsened meshes
with 2k (dashed green) and 5k (dashed red) vertices.
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